matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körperirreduzible polynome
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - irreduzible polynome
irreduzible polynome < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

irreduzible polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:37 Do 25.01.2007
Autor: chipolina

Aufgabe
Zerlege [mm] x^5+x^4+x^2+x+2 [/mm] aus Z[X] in ein produkt von irreduziblen polynomen

Wie kann ich das machen
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
irreduzible polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 14:24 Do 25.01.2007
Autor: angela.h.b.


> Zerlege [mm]x^5+x^4+x^2+x+2[/mm] aus Z[X] in ein produkt von
> irreduziblen polynomen
>  Wie kann ich das machen

Guten Tag,

da die Nullstellen immer in konjugiert komplexen Paaren auftreten, muß es mindestens eine reelle Nullstelle n geben, welche Du aus

$ [mm] x^5+x^4+x^2+x+2 $=(x-n)(x^4+ax^3+bx^2+cx+d) [/mm] ermitteln können müßtest.

Damit hättest Du das Poblem schonmal vereinfacht, danach könntest Du über das Polynom 4.Grades nachdenken.

Gruß v. Angela

Bezug
                
Bezug
irreduzible polynome: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:17 Fr 26.01.2007
Autor: Volker2

Hallo,

es ist zwar richtig, dass es eine reelle Nullstelle des Polynoms geben muß. Genauer gibt es eine und sie ca. 1,5... Ich sehe aber nicht, wie das weiterhelfen soll, wenn sie nicht zufällig rational ist. Das Polynom müßte einen Linearfaktor der Form (aX+b) abspalten. Das kann es aber nicht , denn es ist normiert und der konstante Term ist 2. Daher müsste [mm] a=\pm [/mm] 1 und [mm] b=\pm 2,\pm [/mm] 1 sein, aber [mm] \pm [/mm] 2 und [mm] \pm [/mm] 1 sind keine Nullstellen. Damit weiß man, dass  $ [mm] x^5+x^4+x^2+x+2 [/mm] $ KEINEN Linearfaktor abspaltet. Es ist also entweder irreduzibel oder zerfällt in einen Faktor vom Grad 3 und einen vom Grad 2.
Oft ist es nützlich das Ding mal modulo 2 zu nehmen. Dann zerfällt es als
$$
  [mm] x^5+x^4+x^2+x+2=X(X+1)^2(X^2+X+1)\in\IF_2[X]. [/mm]
$$
Das hilft leider auch nicht sofort, aber man kann vielleicht etwas systematischer Raten.

Volker


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]