matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysiskompaktheit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionalanalysis" - kompaktheit
kompaktheit < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kompaktheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:08 Mi 17.05.2006
Autor: AriR

(frage zuvor nicht gestellt)

hey leute, irgendwie merke ich gerade, dass ich die def. von kompaktheit irgendwie immer noch missverstehen muss. Wir hatten das so wie im forster def und zwar ist eine Teilmenge A eines metrischen Raumes X  kompakt, wenn es zu jeder offenen überdeckung eine endliche teilüberdeckung gibt.

eine offene überdeckung von A ist doch zusagen eine menge von mengen die A komplett enthält, wenn man alle mengen vereinigt.

und wenn dafür halt nur endl. viele mengen ausreiche, ist a kompakt oder?

und sozusagen gibt es doch immer eine endl. teilüberdeckung zu jeder offenen überdeckung, wenn eine offene überdeckung schon eine endl. teilüberdeckung besitzt oder?

danke und gruß Ari

        
Bezug
kompaktheit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:53 Mi 17.05.2006
Autor: MatthiasKr

Hallo Ari,

nochmal ich, bevor ich auch mal was arbeiten muss.... ;-)

> (frage zuvor nicht gestellt)
>  
> hey leute, irgendwie merke ich gerade, dass ich die def.
> von kompaktheit irgendwie immer noch missverstehen muss.

> Wir hatten das so wie im forster def und zwar ist eine
> Teilmenge A eines metrischen Raumes X  kompakt, wenn es zu
> jeder offenen überdeckung eine endliche teilüberdeckung
> gibt.

Jep.
  

> eine offene überdeckung von A ist doch zusagen eine menge
> von mengen die A komplett enthält, wenn man alle mengen
> vereinigt.

richtig.

> und wenn dafür halt nur endl. viele mengen ausreiche, ist a
> kompakt oder?

du verdrehst die definition. so stimmt sie absolut nicht, denn dann wäre auch jede offene menge, eigentlich sogar jede menge kompakt....


> und sozusagen gibt es doch immer eine endl. teilüberdeckung
> zu jeder offenen überdeckung, wenn eine offene überdeckung
> schon eine endl. teilüberdeckung besitzt oder?

bleibe mal schön bei der definition: zu jeder(!) offenen überdeckung der menge muß eine endliche teilmenge der ÜD geben, die auch die komplette menge überdeckt.

einfaches beispiel für eine nicht kompakte menge: die offene einheitskugel im [mm] $\IR^n$. [/mm] Nimm jetzt als überdeckung die offenen kugeln [mm] $B_r(0)$ [/mm] mit [mm] $r=1-\frac [/mm] 1n$, wobei $n$ eine beliebige natürliche zahl ist. Dann überdecken die [mm] $B_r$-Kugeln [/mm] die einheitskugel, aber du kannst keine endliche teilüberdeckung auswählen!

Jetzt ein bißchen klarer?

Gruß
Matthias



  

> danke und gruß Ari

Bezug
                
Bezug
kompaktheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:23 Mi 17.05.2006
Autor: AriR

kann man das vielleicht auch so sehen:

eine menge A ist kompakt [mm] \gdw [/mm] A beschränkt und A abgeschlossen

will man damit sozusagen wirklich kompakte mengen haben wie man sie sich intuitiv vorstellt.

also möchte man damit zB so fälle ausschließen wie zB [mm] [a,\inty) [/mm]

diese menge wäre ja abgeschlossen, trotzdem ist sie unendlich groß mit der bedingung beschränkt kommt aber eine voraussetzung mit rein, die solche fälle nicht zulässt und somit werden nur mengen erfasst die man sich intuitiv als kompakt also nicht unendlich groß sind vorstellt.

ich hoffe ihr versteht was ich meine.. danke und gruß Ari

Bezug
                        
Bezug
kompaktheit: Antwort
Status: (Antwort) fertig Status 
Datum: 23:24 Mi 17.05.2006
Autor: choosy


> kann man das vielleicht auch so sehen:
>  
> eine menge A ist kompakt [mm]\gdw[/mm] A beschränkt und A
> abgeschlossen

das ist in endlichdimensionalen vektorräumen eine äquivalente definition der kompaktheit....

>  
> will man damit sozusagen wirklich kompakte mengen haben wie
> man sie sich intuitiv vorstellt.

naja es gibt schon recht schwer vorstellbare kompakte mengen...
für mich ist es nur eine weitere charakterisierung von mengen wie gebiet, beschränkt,...

>
> also möchte man damit zB so fälle ausschließen wie zB
> [mm][a,\inty)[/mm]

die wären ja bereits mit beschränkt aussen vor

>
> diese menge wäre ja abgeschlossen, trotzdem ist sie
> unendlich groß mit der bedingung beschränkt kommt aber eine
> voraussetzung mit rein, die solche fälle nicht zulässt und
> somit werden nur mengen erfasst die man sich intuitiv als
> kompakt also nicht unendlich groß sind vorstellt.

also wie gesagt, ich weis nicht ob jede kompakte menge auch intuitiv als solche gesehen werden kann. in unendlichdimensionalen räumen ist bereits die abgeschlossene einheitskugel nicht kompakt...

>  
> ich hoffe ihr versteht was ich meine.. danke und gruß Ari


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]