matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysis(komplex)diffbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Komplexe Analysis" - (komplex)diffbarkeit
(komplex)diffbarkeit < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

(komplex)diffbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:39 Mi 15.04.2015
Autor: Killercat

Aufgabe
a) Zeigen Sie, dass die Cauchy Riemann DGL in (0,0) erfüllt sind
b)Ist f in (0,0) komplex diffbar
c) Wo ist die Funktion [mm]\sqrt {|xy|}[/mm] (reell) diffbar
d) Wo ist f komplex diffbar

Hallo,

ich habe eine Frage bzgl. komplexer Differenzierbarkeit und den CR DGL. Zu betrachten ist folgende Funktion:

[mm]f(x+iy) = \sqrt{(|xy|)}-i*(x^2-y^2) [/mm]
Was a) angeht:
Die Betragsfunktion ist in 0 nicht differenzierbar, also habe ich auch keine Ableitung, in die ich das einsetzen kann.
Lasst mich mein Problem hierbei etwas anders ausdrücken. Ich weiß das |x| im Nullpunkt nicht reell diffbar ist. Folglich kann ich da auch nichts einsetzen zum prüfen. Die Frage wäre jetzt, ob, da ich ja nur partielle Diffbarkeit brauche, sich das irgendwie verändert (ich hatte kein Ana II, verzeiht mir das etwas)
b)Zu b muss ich nur prüfen, ob f reell diffbar im Ursprung ist. Das krieg ich hin
c)Ich würde vermuten dass das über eine Grenzwertbetrachtung funktionieren sollte, d) dementsprechend ähnlich

Vielen Dank

        
Bezug
(komplex)diffbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:05 Mi 15.04.2015
Autor: fred97


> a) Zeigen Sie, dass die Cauchy Riemann DGL in (0,0)
> erfüllt sind
>  b)Ist f in (0,0) komplex diffbar
>  c) Wo ist die Funktion [mm]\sqrt {|xy|}[/mm] (reell) diffbar
>  d) Wo ist f komplex diffbar
>  Hallo,
>  
> ich habe eine Frage bzgl. komplexer Differenzierbarkeit und
> den CR DGL. Zu betrachten ist folgende Funktion:
>  
> [mm]f(x+iy) = \sqrt{(|xy|)}-i*(x^2-y^2)[/mm]
>  Was a) angeht:
>  Die Betragsfunktion ist in 0 nicht differenzierbar, also
> habe ich auch keine Ableitung, in die ich das einsetzen
> kann.
>  Lasst mich mein Problem hierbei etwas anders ausdrücken.
> Ich weiß das |x| im Nullpunkt nicht reell diffbar ist.
> Folglich kann ich da auch nichts einsetzen zum prüfen. Die
> Frage wäre jetzt, ob, da ich ja nur partielle Diffbarkeit
> brauche, sich das irgendwie verändert (ich hatte kein Ana
> II, verzeiht mir das etwas)
>  b)Zu b muss ich nur prüfen, ob f reell diffbar im
> Ursprung ist. Das krieg ich hin
>  c)Ich würde vermuten dass das über eine
> Grenzwertbetrachtung funktionieren sollte, d)
> dementsprechend ähnlich
>  
> Vielen Dank

Es ist f(x+iy)=u(x,y)+iv(x,y) mit

   [mm]u(x,y) = \sqrt{(|xy|)}[/mm]  und [mm] v(x,y)=-i*(x^2-y^2)$ [/mm]

Ohne Analysis II hast Du Probleme

Z.B. ist

    [mm] u_x(0,0)=\limes_{t \rightarrow 0}\bruch{u(t,0)-u(0,0)}{t}= [/mm] ?

    [mm] u_y(0,0)=\limes_{t \rightarrow 0}\bruch{u(0,t)-u(0,0)}{t}= [/mm] ?

Berechne mal diese Grenzwerte !

Klar dürfte sein: [mm] v_x(0,0)=0=v_y(0,0). [/mm]

Jetzt solltest Du sehen, dass die Cauchy- Riemannschen DGLen in (0,0) erfüllt sind.

zu (c): u ist in (0,0) nicht reell differenzierbar. Dazu zeige:

   der Grenzwert [mm] \limes_{(x,y) \rightarrow (0,0)}\bruch{u(x,y)-u(0,0)-xu_x(0,0)-yu_y(0,0)}{\wurzel{x^2+y^2}} [/mm] existiert nicht.

Zu (b): f ist in (0,0) nicht komplex differenzierbar, denn f ist in (0,0) nicht reell differenzierbar, weil u in (0,0) nicht reell differenzierbar ist.

FRED

  


Bezug
                
Bezug
(komplex)diffbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:12 Mi 15.04.2015
Autor: Killercat

Erstmal danke für die schnelle Antwort =)

Ohne Ana II hat man sicher Probleme, aber sowas arbeitet man dann halt nach. Deine Antwort hat mir schonmal sehr geholfen.

Vielen lieben Dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 1h 44m 7. HJKweseleit
UAnaR1FolgReih/Wert einer Reihe
Status vor 2h 30m 2. fred97
UAnaR1/Riemann Summe
Status vor 5h 16m 11. TS85
MaßTheo/Sigma-Algebra = P(X)
Status vor 9h 36m 2. Infinit
SStatHypo/Bedeutung Signifikanzniveau
Status vor 10h 26m 4. fred97
UAnaR1FolgReih/Absolute Konvergenz
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]