matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFourier-Transformationkomplexe Fourier-Reihe von x
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Fourier-Transformation" - komplexe Fourier-Reihe von x
komplexe Fourier-Reihe von x < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe Fourier-Reihe von x: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 17:38 Do 18.06.2009
Autor: schlimmer_finger

Aufgabe
Berechnen Sie die komplexe Fourier-Reihe der Funktion F(x)=x für [mm] 0

Guten Tag,
die Fourier-Reihe von f(x)=x ist klar, das bekomme ich hin. Mit
f(x) [mm] \sim\summe_{k=-\infty}^{\infty} C_{k} [/mm] * [mm] e^{j\bruch{2kpix}{p}} [/mm]

[mm] C_{k} [/mm] = [mm] \bruch{1}{p} [/mm] * [mm] \integral_{0}^{p}{f(x) dx} e^{-j\bruch{2kpix}{p}} [/mm]
komme ich auf
f(x) [mm] \sim\summe_{k=-\infty}^{\infty} [/mm] - [mm] \bruch{j}{k} [/mm] * [mm] e^{-jkx} [/mm]
ist das soweit korrekt?
Was ich nicht verstehe, was hat es mit dem  “ [mm] f(x)=f(x+2k\pi) [/mm] für alle ganzen Zahlen k „  auf sich?
Kann mir jemand ein Denkanstoß geben.
Danke Euch.
Daniel

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
komplexe Fourier-Reihe von x: Antwort
Status: (Antwort) fertig Status 
Datum: 18:10 Do 18.06.2009
Autor: abakus


> Berechnen Sie die komplexe Fourier-Reihe der Funktion
> F(x)=x für [mm]0
> Zahlen k.
>  Guten Tag,
>  die Fourier-Reihe von f(x)=x ist klar, das bekomme ich
> hin. Mit
> f(x) [mm]\sim\summe_{k=-\infty}^{\infty} C_{k}[/mm] *
> [mm]e^{j\bruch{2kpix}{p}}[/mm]
>  
> [mm]C_{k}[/mm] = [mm]\bruch{1}{p}[/mm] * [mm]\integral_{0}^{p}{f(x) dx} e^{-j\bruch{2kpix}{p}}[/mm]
>  
> komme ich auf
>  f(x) [mm]\sim\summe_{k=-\infty}^{\infty}[/mm] - [mm]\bruch{j}{k}[/mm] *
> [mm]e^{-jkx}[/mm]
> ist das soweit korrekt?
>  Was ich nicht verstehe, was hat es mit dem  “
> [mm]f(x)=f(x+2k\pi)[/mm] für alle ganzen Zahlen k „  auf sich?

Hallo,
ich schätze mal, die Funktion f (wie auch immer sie im Detail beschaffen sein mag) soll periodisch sein mit der kleinsten Periode [mm] 2\pi. [/mm]
Gruß Abakus

>  Kann mir jemand ein Denkanstoß geben.
>  Danke Euch.
>  Daniel
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
        
Bezug
komplexe Fourier-Reihe von x: Antwort
Status: (Antwort) fertig Status 
Datum: 18:25 Do 18.06.2009
Autor: MathePower

Hallo schlimmer_finger,

> Berechnen Sie die komplexe Fourier-Reihe der Funktion
> F(x)=x für [mm]0
> Zahlen k.
>  Guten Tag,
>  die Fourier-Reihe von f(x)=x ist klar, das bekomme ich
> hin. Mit
> f(x) [mm]\sim\summe_{k=-\infty}^{\infty} C_{k}[/mm] *
> [mm]e^{j\bruch{2kpix}{p}}[/mm]
>  
> [mm]C_{k}[/mm] = [mm]\bruch{1}{p}[/mm] * [mm]\integral_{0}^{p}{f(x) dx} e^{-j\bruch{2kpix}{p}}[/mm]
>  
> komme ich auf
>  f(x) [mm]\sim\summe_{k=-\infty}^{\infty}[/mm] - [mm]\bruch{j}{k}[/mm] *
> [mm]e^{-jkx}[/mm]
> ist das soweit korrekt?


Für die Koeffizienten [mm]C_{k}, k \not= 0, \ k \in \IZ[/mm] erhalte ich:

[mm]C_{k}=\bruch{j}{k}[/mm]

Außerdem ist

[mm]C_{0}=\bruch{1}{2\pi} * \integral_{0}^{2\pi}{x*e^{-j*0*x} \ dx}=\bruch{1}{2\pi} * \integral_{0}^{2\pi}{x \ dx}[/mm]


zu berechnen.


>  Was ich nicht verstehe, was hat es mit dem  “
> [mm]f(x)=f(x+2k\pi)[/mm] für alle ganzen Zahlen k „  auf sich?
>  Kann mir jemand ein Denkanstoß geben.
>  Danke Euch.
>  Daniel
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Gruß
MathePower

Bezug
                
Bezug
komplexe Fourier-Reihe von x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:05 Do 18.06.2009
Autor: schlimmer_finger

vielen Dank, für die Antwort,

[mm] C_{k}=\bruch{j}{k} [/mm] ist natürlich richtig, hatte einen kleinen Fehler eingebaut.

warum ist [mm] C_{0} [/mm] zu bestimmen?
[mm] C_{0}=\pi [/mm]

wie komme ich mit dem [mm] f(x+2k\pi) [/mm] weiter? Müsste ich da k=2n seten und dann ein [mm] C_{2n} [/mm] berechnen?

Vielen Dank.
Grüße
Daniel

Bezug
                        
Bezug
komplexe Fourier-Reihe von x: Antwort
Status: (Antwort) fertig Status 
Datum: 21:23 Do 18.06.2009
Autor: MathePower

Hallo schlimmer_finger,

-> vielen Dank, für die Antwort,

>  
> [mm]C_{k}=\bruch{j}{k}[/mm] ist natürlich richtig, hatte einen
> kleinen Fehler eingebaut.
>  
> warum ist [mm]C_{0}[/mm] zu bestimmen?


Nun, weil

[mm]C_{k}=\bruch{j}{k}[/mm]

nicht für k=0 gilt.


>  [mm]C_{0}=\pi[/mm]


[ok]


>
> wie komme ich mit dem [mm]f(x+2k\pi)[/mm] weiter? Müsste ich da k=2n
> seten und dann ein [mm]C_{2n}[/mm] berechnen?


Wie abakus in einem anderen Post schrieb, ist das
mitunter die Schreibweise für periodische Funktionen.

Hier mußt Du also nix weiter berechnen.

Jetzt kannst Dun natürlich noch die komplexe Fourierreihe hinschreiben.


>  
> Vielen Dank.
>  Grüße
>  Daniel


Gruß
MathePower

Bezug
                                
Bezug
komplexe Fourier-Reihe von x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:55 Do 18.06.2009
Autor: schlimmer_finger

Dann lautet meine Fourier-Reihe?

[mm] f(x)\sim\summe_{k=-\infty}^{\infty} \bruch{j}{k} [/mm] * [mm] e^{-jkx} [/mm]  für [mm] k\not=0 [/mm]

und

[mm] f(x)\sim\summe_{k=-\infty}^{\infty} \pi [/mm]  *  [mm] e^{-jkx} [/mm]  für k=0

Vielen Dank für Deine Geduld und Hilfe, hat mir auf jeden Fall weiter geholfen.
Super
Grüße
Daniel

Bezug
                                        
Bezug
komplexe Fourier-Reihe von x: Antwort
Status: (Antwort) fertig Status 
Datum: 22:18 Do 18.06.2009
Autor: MathePower

Hallo schlimmer_finger,

> Dann lautet meine Fourier-Reihe?
>  
> [mm]f(x)\sim\summe_{k=-\infty}^{\infty} \bruch{j}{k}[/mm] *
> [mm]e^{-jkx}[/mm]  für [mm]k\not=0[/mm]
>  
> und
>  
> [mm]f(x)\sim\summe_{k=-\infty}^{\infty} \pi[/mm]  *  [mm]e^{-jkx}[/mm]  für
> k=0


Die komplexe Fourierreihe lautet:

[mm]f\left(x\right)=\pi+\summe_{k=-\infty, \ k\not= 0}^{\infty}{\bruch{j}{k}e^{j*k*x}}[/mm]


>  
> Vielen Dank für Deine Geduld und Hilfe, hat mir auf jeden
> Fall weiter geholfen.
>  Super
>  Grüße
>  Daniel


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]