matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe Zahlenkomplexe Potenzreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Komplexe Zahlen" - komplexe Potenzreihe
komplexe Potenzreihe < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe Potenzreihe: Korrektur
Status: (Frage) beantwortet Status 
Datum: 02:46 Di 17.07.2012
Autor: Quadratur

Aufgabe
Gegeben sei [mm] g(z)=\bruch{z}{(z+2i)(z-3)} [/mm]

a) In einer Umgebung von 0 kann man $g$ als Potenzreihe schreiben:

[mm] g(z)=\summe_{n=0}^{\infty}\alpha_nz^n [/mm]

Wieso stimmt diese Behauptung?

b) Welchen Konvergenzradius hat [mm] \summe_{n=0}^{\infty}\alpha_nz^n [/mm] ?

c) Berechnen Sie [mm] \alpha_0 [/mm] und [mm] \alpha_1 [/mm]

Guten Tag liebes Mathe-Team,

ich wollte fragen, ob meine Lösung umfangreich genug ist bzw. Fehler enthält.

zur a)

$g$ ist in [mm] z_0=0\in$U$ [/mm] analytisch mit [mm] B_2(0)\subset [/mm] U (Singularitäten bei -2i und 3) für die dann gilt:

[mm] g(z)=\summe_{n=0}^{\infty}\alpha_n(z-0)^n [/mm] für [mm] z\in B_2(0), [/mm]

denn [mm] g:B_2(0)\to\IC [/mm] ist offensichtlich holomorph.

zu b)

Der Konvergenzradius ist nach einem Satz aus der Vorlesung [mm] R\ge2 [/mm] (eigentlich ist der Konvergenzradius doch =2 ... müsste ich das hier noch ausrechnen?) und es gilt für alle [mm] z\in B_2(0): [/mm]

[mm] g(z)=\summe_{n=0}^{\infty}\bruch{1}{n!}g^{(n)}(0)z^n [/mm]

zu c)

[mm] \alpha_0=0 [/mm] da g(0)=0
[mm] \alpha_1=\bruch{1}{6}i, [/mm] da [mm] g'(z)=\bruch{-z^2-6i}{(z+2i)^2(z-3)^2} [/mm]

Beste Grüße,
Alex

        
Bezug
komplexe Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 07:25 Di 17.07.2012
Autor: fred97


> Gegeben sei [mm]g(z)=\bruch{z}{(z+2i)(z-3)}[/mm]
>  
> a) In einer Umgebung von 0 kann man [mm]g[/mm] als Potenzreihe
> schreiben:
>  
> [mm]g(z)=\summe_{n=0}^{\infty}\alpha_nz^n[/mm]
>  
> Wieso stimmt diese Behauptung?
>  
> b) Welchen Konvergenzradius hat
> [mm]\summe_{n=0}^{\infty}\alpha_nz^n[/mm] ?
>  
> c) Berechnen Sie [mm]\alpha_0[/mm] und [mm]\alpha_1[/mm]
>  Guten Tag liebes Mathe-Team,
>  
> ich wollte fragen, ob meine Lösung umfangreich genug ist
> bzw. Fehler enthält.
>  
> zur a)
>
> [mm]g[/mm] ist in [mm]z_0=0\in[/mm] [mm]U[/mm] analytisch mit [mm]B_2(0)\subset[/mm] U
> (Singularitäten bei -2i und 3) für die dann gilt:
>  
> [mm]g(z)=\summe_{n=0}^{\infty}\alpha_n(z-0)^n[/mm] für [mm]z\in B_2(0),[/mm]
>  
> denn [mm]g:B_2(0)\to\IC[/mm] ist offensichtlich holomorph.

Na ja.....

Wir setzen G:= [mm] \IC \setminus \{3, -2i\}. [/mm]

Dann ist g auf G holomorph. Da 0 [mm] \in [/mm] G, besagt der Satz über die Entwickelbarkeit in Potenzreihen, dass man g in einer Umgebung von 0 als Potenzreihe schreiben kann.


>  
> zu b)
>  
> Der Konvergenzradius ist nach einem Satz aus der Vorlesung
> [mm]R\ge2[/mm] (eigentlich ist der Konvergenzradius doch =2 ...
> müsste ich das hier noch ausrechnen?)



Nein, ausrechnen mußt Du das nicht, aber begründen:

Der Satz besagt, dass der Konvergenzradius mindestens so groß ist wie der Abstand von [mm] z_0=0 [/mm] zum Rand von G, der Konvergenzradius ist also [mm] \ge [/mm] 2.

Wäre er >2, so hätte g in  -2i eine hebbare Singularität. Ist das der Fall ?




>  und es gilt für
> alle [mm]z\in B_2(0):[/mm]
>  
> [mm]g(z)=\summe_{n=0}^{\infty}\bruch{1}{n!}g^{(n)}(0)z^n[/mm]
>  
> zu c)
>  
> [mm]\alpha_0=0[/mm] da g(0)=0
> [mm]\alpha_1=\bruch{1}{6}i,[/mm] da
> [mm]g'(z)=\bruch{-z^2-6i}{(z+2i)^2(z-3)^2}[/mm]

Das stimmt.

FRED

>  
> Beste Grüße,
>  Alex


Bezug
                
Bezug
komplexe Potenzreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:25 Di 17.07.2012
Autor: Quadratur

Danke für deine Hilfe Fred,

> Na ja.....
>  
> Wir setzen G:= [mm]\IC \setminus \{3, -2i\}.[/mm]
>  
> Dann ist g auf G holomorph. Da 0 [mm]\in[/mm] G, besagt der Satz
> über die Entwickelbarkeit in Potenzreihen, dass man g in
> einer Umgebung von 0 als Potenzreihe schreiben kann.
>  

Da stimme ich dir zu.

> Nein, ausrechnen mußt Du das nicht, aber begründen:
>  
> Der Satz besagt, dass der Konvergenzradius mindestens so
> groß ist wie der Abstand von [mm]z_0=0[/mm] zum Rand von G, der
> Konvergenzradius ist also [mm]\ge[/mm] 2.
>  
> Wäre er >2, so hätte g in  -2i eine hebbare
> Singularität. Ist das der Fall ?

Nun, das ist nicht der Fall, wenn man sich den Limes für zum Beispiel [mm] it\mapsto-2i [/mm] anschaut. Dieser strebt gegen [mm] \infty. [/mm] Demnach ist $g$ in einer Umgebung von $-2i$ nicht beschränkt und damit auch nicht hebbar.

Gruß,
Alex



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]