matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysiskomplexe Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Komplexe Analysis" - komplexe Zahlen
komplexe Zahlen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe Zahlen: Division
Status: (Frage) beantwortet Status 
Datum: 02:21 Mo 05.03.2007
Autor: hooover

Aufgabe
[mm] z_{1}=-3+2i, [/mm]

[mm] z_{2}=1-2i, [/mm]

Berechne [mm] \bruch{z_{1}}{z_{2}} [/mm]

Eine wunderschöne Gute Nacht an alle Mondanbeter,

leider hänge ich immernoch vor meinen Aufgaben und komme wiedermal nicht vorran.

In meinen Aufzeichnungen finde ich nur das Rezept für

[mm] \bruch{1}{z}=\bruch{1}{x+iy}=\bruch{x-iy}{x^2+y^2}. [/mm]

Ich komme nur soweit:

[mm] \bruch{z_{1}}{z_{2}} \gdw \bruch{-3+2i}{1-2i} [/mm]

das ist nicht viel, ich weiß es ja selbst,

schon mal vielen Dank für eure Hilfe

gruß hooover



        
Bezug
komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 02:33 Mo 05.03.2007
Autor: schachuzipus


> [mm]z_{1}=-3+2i,[/mm]
>
> [mm]z_{2}=1-2i,[/mm]
>  
> Berechne [mm]\bruch{z_{1}}{z_{2}}[/mm]
>  Eine wunderschöne Gute Nacht an alle Mondanbeter,
>  
> leider hänge ich immernoch vor meinen Aufgaben und komme
> wiedermal nicht vorran.
>  
> In meinen Aufzeichnungen finde ich nur das Rezept für
>  
> [mm]\bruch{1}{z}=\bruch{1}{x+iy}=\bruch{x-iy}{x^2+y^2}.[/mm]
>  
> Ich komme nur soweit:
>  
> [mm]\bruch{z_{1}}{z_{2}} \gdw\bruch{-3+2i}{1-2i}[/mm]  [notok]

[mm] \text{hier muss ein = stehen} [/mm] ;-)

>  
> das ist nicht viel, ich weiß es ja selbst,
>  
> schon mal vielen Dank für eure Hilfe
>  
> gruß hooover
>  
>  

Hallo hooover und ebenfalls eine gute Nacht ;-)

Also wenn du mit dem komplex Konjugierten erweiterst, kriegst du den imaginären Teil weg, es bleibt ein reelle Zahl [mm] (a^2+b^2 [/mm] wie du oben richtig geschrieben hast)

Also: [mm] \bruch{-3+2i}{1-2i} [/mm] erweitern mit [mm] \bruch{1+2i}{1+2i} [/mm]

[mm] =\bruch{(-3+2i)(1+2i)}{(1-2i)(1+2i)}=\bruch{-3-6i+2i-4}{1^2+2^2}=\bruch{-7-4i}{5}=-\bruch{7}{5}-\bruch{4}{5}i [/mm]


Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]