matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe Zahlenkomplexe Zahlen mit Exponent
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Komplexe Zahlen" - komplexe Zahlen mit Exponent
komplexe Zahlen mit Exponent < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe Zahlen mit Exponent: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:03 Fr 14.11.2008
Autor: Walkto3oo1

Aufgabe
(2(cos [mm] \bruch{PII}{3}+j*sin \bruch{PII}{3}))^{10} [/mm]

Wie muss ich zuerst vorgehen?
hab bis jetzt ersteinmal alles ausmultiplitiert um eine gebräuchliche kartesiche Form zu erhalten. Dabei kommt raus: [mm] x=(2+j0,0366)^{10} [/mm]
Danach Betrag und Winkel ausgerechnet und in die Exponentialform gebracht (Aufgabenanweisung) dann in der Exp. Form das hoch verrechnet und wieder in die kartesische gebracht.
Leider stimmt mein Ergebnis überhaupt nicht.

Bitte um hilfe für eine korrekte Vorgehensweise.

richtiges Ergebnis x= [mm] -512-512\wurzel{3}j [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
komplexe Zahlen mit Exponent: Antwort
Status: (Antwort) fertig Status 
Datum: 19:17 Fr 14.11.2008
Autor: XPatrickX


> (2(cos [mm]\bruch{PII}{3}+j*sin \bruch{PII}{3}))^{10}[/mm]

Hallo!

>  Wie muss
> ich zuerst vorgehen?
>  hab bis jetzt ersteinmal alles ausmultiplitiert um eine
> gebräuchliche kartesiche Form zu erhalten. Dabei kommt
> raus: [mm]x=(2+j0,0366)^{10}[/mm]  

Das ist hier nicht nötig.

>  Danach Betrag und Winkel ausgerechnet und in die
> Exponentialform gebracht (Aufgabenanweisung)

Das kannst du doch auch direkt machen:

[mm] $2(\cos\bruch{\pi}{3}+j*\sin\bruch{\pi}{3}) [/mm] = [mm] 2*e^{j\frac{\pi}{3}}$ [/mm]

Jetzt kannst du das alles "hoch 10" rechnen, dazu einfach den Radius mit 10 potenzieren und den e-Term entsprechend der Potenzgesetze.


> dann in der
> Exp. Form das hoch verrechnet und wieder in die kartesische
> gebracht.
>  Leider stimmt mein Ergebnis überhaupt nicht.
>  
> Bitte um hilfe für eine korrekte Vorgehensweise.
>  
> richtiges Ergebnis x= [mm]-512-512\wurzel{3}j[/mm]
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß Patrick

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]