matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe Zahlenkomplexe Zahlen mit potenz erm
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Komplexe Zahlen" - komplexe Zahlen mit potenz erm
komplexe Zahlen mit potenz erm < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe Zahlen mit potenz erm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:56 Di 18.11.2008
Autor: schoni2404

Aufgabe
Ermitteln Sie alle komplexen Zahlen, für die die Gleichung [mm] z=z^5 [/mm] gilt.

Mein Ansatz ist ist die auflösung einer binomischen Formel gewesen und ich hab dann eine sehr lange Gleichung von [mm] a^5+4a^4bi-6a^3b^2...usw. [/mm] herausbekommen, weiß dann aber nicht wie ich mit dieser Gleichung rechnen muß bzw. ob der ansatz zur lösung der richtige ist.

Grüße Sebastian

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
komplexe Zahlen mit potenz erm: Antwort
Status: (Antwort) fertig Status 
Datum: 09:11 Di 18.11.2008
Autor: schachuzipus

Hallo Sebastian und herzlich [willkommenmr],

> Ermitteln Sie alle komplexen Zahlen, für die die Gleichung
> [mm]z=z^5[/mm] gilt.
>  Mein Ansatz ist ist die auflösung einer binomischen Formel
> gewesen und ich hab dann eine sehr lange Gleichung von
> [mm]a^5+4a^4bi-6a^3b^2...usw.[/mm] herausbekommen, weiß dann aber
> nicht wie ich mit dieser Gleichung rechnen muß bzw. ob der
> ansatz zur lösung der richtige ist.

Das ist mehr als mühselig, du müsstest einen Koeffizientengergleich der Real- und Imaginärteile machen, ich weiß gar nicht, ob das überhaupt schön klappt ;-)

Aber ersichtlich ist $z=0$ eine Lösung, denn [mm] $0^5=0$ [/mm]

Für [mm] $z\neq [/mm] 0$ darfst du durch $z$ teilen und bekommst: [mm] $z^4=1$ [/mm]

Diese Gleichung hat in [mm] $\IC$ [/mm] 4 Lösungen, die sog. 4ten Einheitswurzeln.

Suche mal in deinem Skript nach, wie man die berechnet oder überlege es dir heuristisch.

2 reelle Lösungen von [mm] $z^4=1$ [/mm] kannst du ja ablesen ...

Es ist ja [mm] $z^4=1\Rightarrow z^2=|1|$, [/mm] wenn du die Wurzel ziehst, also [mm] $z^2=1$ [/mm] oder [mm] $z^2=-1$ [/mm]

Damit kannst du die (restlichen 4 neben z=0) Lösungen ablesen

"Zur Not" kannst du bei [mm] $z^4=1$ [/mm] wieder $z=a+bi$ setzen und einen Koeffizientenvergleich mit [mm] $1=1+0\cdot{}i$ [/mm] machen, Real- und Imaginärteil müssen ja gleich sein.

Dieser Koeffizientenvgl. ist hier nicht allzu schwierig.

Aber "schöner" ist's mit den Einheitswurzeln ...

>  
> Grüße Sebastian
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  

LG

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]