matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe Zahlenkomplexe zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Komplexe Zahlen" - komplexe zahlen
komplexe zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe zahlen: komplexe zahl
Status: (Frage) beantwortet Status 
Datum: 20:00 So 13.02.2011
Autor: T.T.

Aufgabe
Darstellung komplexer Zahlen mit Polarkoordinaten.

1) z=2+6i
2) -3+4i

Wir haben gerade mit dem Thema Komplexe Zahlen angefangen, weil wir ja jetzt die Abiklausuren hinter uns haben und unser Lehrer wollte mit uns dieses Thema noch durchnehmen, leider steht zu diesem nichts in unseren Mathebüchern.

Wir haben jetzt die Darstellung Komplexer Zahlen mit Polarkoordinaten durchgenommen und hatten auch eine Formel dafür

[mm] z=r*e^{i\pi}=r(cos \alpha+i [/mm] sin [mm] \alpha) [/mm]

wir sollten jetzt überprüfen ob dasselbe rauskommt

bei 1) kam bei mir z=2,02+6,00i raus also ca das gleiche wie 1) z=2+6i

Bei 2) ist ja noch dieses -3 ich weiß nicht ob es an dem minus liegt, denn ich habe z=2,47+(-3,3)i

das ist ja nicht ungefähr das gleiche wie  2) -3+4i

Meine Frage ist jetzt, ob ich mich verrechnet habe oder ob es hier wieder einen Trick gibt den wir noch nicht kennen.

Danke im Voraus.

        
Bezug
komplexe zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:09 So 13.02.2011
Autor: kushkush

Hallo,


Was hast du denn gerechnet um auf deine Ergebnisse zu kommen?


Gruss

kushkush

Bezug
                
Bezug
komplexe zahlen: komplexe zahl
Status: (Frage) beantwortet Status 
Datum: 21:28 So 13.02.2011
Autor: T.T.

also erst habe ich r ausgerechnet

wir haben das so gemacht:

x achse ist der Reale Teil und y achse ist der imaginäre Teil
Das wäre ja dann hier -3 auf x achse und 4 auf y achse; r haben wir mit Pythagoras berechnet:

1)
[mm] r=\wurzel{(-3)²+4²}=\wurzel{17} [/mm]

dann habe ich tan [mm] \alpha [/mm] = [mm] \bruch{4}{-3} [/mm]
=> [mm] \alpha= tan^{-1}(\bruch{4}{-3})= [/mm] -53,13°

Jetzt habe ich die Werte einfach nur in meine Formel eingesetzt

[mm] z=r\cdot{}e^{i\pi}=r(cos \alpha+i [/mm] $ sin $ [mm] \alpha) [/mm]

=> [mm] z=\wurzel{17} [/mm] (cos -53,13°+ i sin -53,13°)=2,47+(-3,3)i

und z=2,47+(-3,3)i    müsste eigentlich dasselbe wie z=-3+4i sein.  



Bezug
                        
Bezug
komplexe zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:44 So 13.02.2011
Autor: abakus


> also erst habe ich r ausgerechnet
>
> wir haben das so gemacht:
>  
> x achse ist der Reale Teil und y achse ist der imaginäre
> Teil
>  Das wäre ja dann hier -3 auf x achse und 4 auf y achse; r
> haben wir mit Pythagoras berechnet:
>  
> 1)
>  [mm]r=\wurzel{(-3)²+4²}=\wurzel{17}[/mm]

Hallo,
du darfst in Formeln nicht die Drittbelegung der Taste "2" für "hoch 2" nehmen; das wird nicht angezeigt. Verwende stattdessen ^2.
Dein inhaltlicher Fehler: [mm] (-3)^2+4^2 [/mm] ist nie im Leben 17.
Gruß Abakus

>  
> dann habe ich tan [mm]\alpha[/mm] = [mm]\bruch{4}{-3}[/mm]
> => [mm]\alpha= tan^{-1}(\bruch{4}{-3})=[/mm] -53,13°
>  
> Jetzt habe ich die Werte einfach nur in meine Formel
> eingesetzt
>  
> [mm]z=r\cdot{}e^{i\pi}=r(cos \alpha+i[/mm]  [mm]sin[/mm] [mm]\alpha)[/mm]
>
> => [mm]z=\wurzel{17}[/mm] (cos -53,13°+ i sin
> -53,13°)=2,47+(-3,3)i
>  
> und z=2,47+(-3,3)i    müsste eigentlich dasselbe wie
> z=-3+4i sein.  
>
>  


Bezug
                                
Bezug
komplexe zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:56 So 13.02.2011
Autor: T.T.

achso da war mein rechenfehler :(
[mm] 4^2 [/mm] =16  und nicht 8 ^^

ok dann komme ich jetzt auf

z=3+4i [mm] \not= [/mm] z=-3+4i

weil -3 wird ja quadriert und daraus wird dann eine positive Zahl.

Wie kann ich das denn jetzt erklären. Oder wie komme ich auf die -3

PS. Mein Lehrer hat auch gemeint, dass wir etwas anderes rausbekommen werden als der Taschenrechner.



Bezug
        
Bezug
komplexe zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:55 So 13.02.2011
Autor: leduart

Hallo
[mm] tan(\phi)=-4/3 [/mm] hat zwischen -180 und +180 2 Lösungen, also ausser -53° auch noch -53,..+180°  du musst also ausser dem Tan auszurechnen, noch fesstellen in welchem quadranten dein z liegt, hier im 2 ten,
dass man was falsches rauskriegen kann ist klar weil ja -3+4i  und 3-4i dasselbe tan liefern.
Gruss leduaer


Bezug
                
Bezug
komplexe zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:03 So 13.02.2011
Autor: T.T.

Also ich habe jetzt auch das richtige raus bis auf dieses minuszeichen.

Ihre Antwort verstehe ich nicht so ganz, wie kann ich mir das denn vorstellen mit dem Tangens weil bei sin und cos kann ich mir das am Einheitskreis vorstellen oder auch am Graphen, aber der Graph von Tan verläuft garnicht im 2. Quadranten oder?

Mit Tan haben wir nämlich nie wirklich viel gerechnet.

Bezug
                        
Bezug
komplexe zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:47 So 13.02.2011
Autor: MathePower

Hallo T.T,

> Also ich habe jetzt auch das richtige raus bis auf dieses
> minuszeichen.
>  
> Ihre Antwort verstehe ich nicht so ganz, wie kann ich mir
> das denn vorstellen mit dem Tangens weil bei sin und cos
> kann ich mir das am Einheitskreis vorstellen oder auch am
> Graphen, aber der Graph von Tan verläuft garnicht im 2.
> Quadranten oder?


Mit dem Tangens rechnest Du nur den möglichen Winkel aus.

Mit Hilfe des Sinus und Cosinus legst Du fest,
in welchem Quadranten dieser Winkel liegt.


>  
> Mit Tan haben wir nämlich nie wirklich viel gerechnet.


Gruss
MathePower

Bezug
                        
Bezug
komplexe zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:53 So 13.02.2011
Autor: T.T.

achso heißt das 1. quadrant ist immer sin und 2. quadrant ist immer cos?

Und wenn ich ehrlich bin verstehe ich das immer noch nicht 100%ig was das jetzt heißt wenn ich rausbekomm

z=3+4i  anstatt z=3+4i



Bezug
                                
Bezug
komplexe zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:03 So 13.02.2011
Autor: MathePower

Hallo T.T.,

> achso heißt das 1. quadrant ist immer sin und 2. quadrant
> ist immer cos?
>  

Nein.

Es gibt Intervalle, da ist der Sinus bzw. Cosinus größer oder gleich Null,
und solche, da der Sinus bzw. Cosinus kleiner Null ist.


> Und wenn ich ehrlich bin verstehe ich das immer noch nicht
> 100%ig was das jetzt heißt wenn ich rausbekomm
>  
> z=3+4i  anstatt z=3+4i
>  


Gruss
MathePower  

Bezug
                        
Bezug
komplexe zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:56 So 13.02.2011
Autor: kushkush

Hallo,


schau in welchem Quadranten sich die Zahl der Form a+bi befindet, dann weeisst du um wie viel du den Winkel korrigieren musst in der Polarform. Überlege dir wie viel Grad du dazuzählen musst zum Winkel in der Polarform wenn eine Zahl im 1,2,3,4 Quadranten liegt dann hast du alle Fälle abgedeckt.  


Gruss

kushkush

Bezug
                                
Bezug
komplexe zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:16 So 13.02.2011
Autor: T.T.

hm also mein z=-3+4i liegt im 2. quadranten.

Aber das mit Winkel und dazurechnen/korrigieren verstehe ich noch nicht.


Bezug
                                        
Bezug
komplexe zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:25 So 13.02.2011
Autor: kushkush

Hallo

Zeichne die Lösung und deine Lösung in die komplexe Zahleneben ein, dann siehst du welcher Winkel dazwischen liegen müsste und dann kannst du auch den Winkel in der Polarform korrigieren.  



Gruss

kushkush

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]