komplexer Sinus < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:19 Do 17.07.2008 | Autor: | Anne1986 |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo!
Ich sitze hier gerade an der Vorbereitung für meine FT-Klausur am Samstag.
Ich frage mich gerade, ob der komplexe Sinus, also [mm] sin:\IC \to \IC, [/mm] die Periode [mm] 2\pi [/mm] besitzt. Also beim reellen Sinus ist das ja klar. Aber ich weiß nicht so recht wie ich mir das für die komplexe Funktion vorstellen müsste. Er müsste ja "in jede Richtung" die Periode [mm] 2\pi [/mm] haben.
Vielleicht kann mir einer hier helfen?
Gruß, Anne
|
|
|
|
Ja, die Sinusfunktion hat die Periode [mm]2 \pi[/mm], egal, ob reell oder komplex. Das bedeutet nichts anderes als
[mm]\sin \left( z + 2 \pi \right) = \sin z \ \ \ \mbox{für alle} \ \ z \in \mathbb{C}[/mm]
Was du genau mit "in jede Richtung" meinst, ist mir nicht klar. Denn eine Addition von [mm]2 \pi[/mm] verschiebt das Argument um [mm]2 \pi[/mm] nach rechts, sonst nichts.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:45 Do 17.07.2008 | Autor: | Anne1986 |
Ja, es ist schwierig auszudrücken, was ich meine.
Während der reelle Sinus ja einen zweidimensionalen Graphen hat, hat Sinus im Komplexen einen vierdimensionalen. Und da ist eben nicht klar (also mir nicht), was "nach rechts" verschieben ist. Unter nach rechts verschieben, verstehe ich in pos. [mm] \IR [/mm] - Richtung!
|
|
|
|
|
Mit der vierdimensionalen Vorstellung habe ich so meine Schwierigkeiten. Sich eine Funktion durch einen Graphen vorzustellen, ist ja nur eine von mehreren Möglichkeiten. Wenn du
[mm]w = \sin z[/mm]
schreibst, kannst du zwei komplexe Ebenen betrachten: die [mm]z[/mm]-Ebene und die [mm]w[/mm]-Ebene. Und jetzt machst du eine Markierung in der [mm]z[/mm]-Ebene. Für das markierte [mm]z[/mm] berechnest du das zugehörige [mm]w[/mm] der [mm]w[/mm]-Ebene und machst dafür die gleiche Markierung. Dann ein anderes [mm]z[/mm] und das zugehörige [mm]w[/mm] mit einer anderen Markierung, dann ein drittes Paar [mm]z,w[/mm], ein viertes usw.
So bekommst du statt eines statischen Graphen eine dynamische Vorstellung der Wirkungsweise der Sinusfunktion.
Und wenn du nun zwei [mm]z[/mm]-Werte hast, die sich nur durch eine Verschiebung um [mm]2 \pi[/mm] unterscheiden, und sie verschieden markierst, so liegen die entsprechenden Markierungen für die zugehörigen [mm]w[/mm]-Werte in der [mm]w[/mm]-Ebene aufeinander.
|
|
|
|
|
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Hallo!
> Ich sitze hier gerade an der Vorbereitung für meine
> FT-Klausur am Samstag.
> Ich frage mich gerade, ob der komplexe Sinus, also [mm]sin:\IC \to \IC,[/mm]
> die Periode [mm]2\pi[/mm] besitzt. Also beim reellen Sinus ist das
> ja klar. Aber ich weiß nicht so recht wie ich mir das für
> die komplexe Funktion vorstellen müsste. Er müsste ja "in
> jede Richtung" die Periode [mm]2\pi[/mm] haben.
> Vielleicht kann mir einer hier helfen?
Vielleicht hilft es Dir, diese [mm] $2\pi$-Periodizität [/mm] des [mm] $\sin(z)$ [/mm] mit der Exponentialfunktion so in Zusammenhang zu bringen:
[mm]\sin(z)=\frac{e^{\mathrm{i}z}-e^{-\mathrm{i}z}}{2\mathrm{i}}=\frac{e^{\mathrm{i}(z+n\cdot 2\pi)}-e^{-\mathrm{i}(z+n\cdot 2\pi)}}{2\mathrm{i}}=\sin(z+n\cdot 2\pi),\quad n\in\IZ[/mm]
Was Du also wissen musst ist im Grunde nur, dass [mm] $e^{\mathrm{i} n\cdot 2\pi}=1$ [/mm] ist, für alle [mm] $n\in \IZ$, [/mm] und wie der [mm] $\sin(z)$ [/mm] mit Hilfe von [mm] $e^z$ [/mm] definiert werden kann (erstes Gleichheitszeichen in der obigen Umformungskette).
|
|
|
|