matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationkonstante Funktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differentiation" - konstante Funktion
konstante Funktion < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konstante Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:51 Fr 21.09.2007
Autor: Anna-Lyse

Hallo,

wenn ich die Charakterisierung einer konstanten Funktion in einem Satz erzählen soll, wäre das dann mathematisch so korrekt:
Sei I ein Intervall mit mehr als einem Punkt, und sei f:I [mm] \to \IR [/mm] stetig. Ist f differenzierbar auf I (eventuell mit Ausnahme der Endpunkte), so gilt: Ist f'(x) = 0 für jedes x [mm] \in [/mm] I (eventuell mit Ausnahme der Endpunkte), so ist f eine konstante Funktion.

Ich frage nach, weil in manchen Definitionen explizit stand: "f differenzierbar auf das Intervall I ohne die Endpunkte....f'(x) = 0 für jedes x [mm] \in [/mm] I ohne Endpunkte".

Danke!
Gruß,
Anna

        
Bezug
konstante Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 08:11 Fr 21.09.2007
Autor: angela.h.b.


> wenn ich die Charakterisierung einer konstanten Funktion in
> einem Satz erzählen soll, wäre das dann mathematisch so
> korrekt:
>  Sei I ein Intervall mit mehr als einem Punkt, und sei f:I
> [mm]\to \IR[/mm] stetig. Ist f differenzierbar auf I (eventuell mit
> Ausnahme der Endpunkte), so gilt: Ist f'(x) = 0 für jedes x
> [mm]\in[/mm] I (eventuell mit Ausnahme der Endpunkte), so ist f eine
> konstante Funktion.
>  
> Ich frage nach, weil in manchen Definitionen explizit
> stand: "f differenzierbar auf das Intervall I ohne die
> Endpunkte....f'(x) = 0 für jedes x [mm]\in[/mm] I ohne Endpunkte".

Hallo,

Du hast die konstante Funktion richtig charakterisiert:

Wenn Du eine Funktion f hast, welche auf einem Intervall (mit mehr als einem Punkt) stetig ist und im Innern des Intervalls differenzierbar mit f'(x)=0, so ist die Funktion auf I konstant.

Die Funktion darf(!) natürlich auch in den Endpunkten differenzierbar sein. Die Differenzierbar keit auf dem Intervallinneren ist eine Minimalforderung.

Gruß v. Angela


Bezug
                
Bezug
konstante Funktion: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:55 Fr 21.09.2007
Autor: Anna-Lyse

Hallo Angela,

> Du hast die konstante Funktion richtig charakterisiert:
>  
> Wenn Du eine Funktion f hast, welche auf einem Intervall
> (mit mehr als einem Punkt) stetig ist und im Innern des
> Intervalls differenzierbar mit f'(x)=0, so ist die Funktion
> auf I konstant.
>  
> Die Funktion darf(!) natürlich auch in den Entpunkten
> differenzierbar sein. Die Differenzierbar keit auf dem
> Intervallinneren ist eine Minimalforderung.
>  

Super, danke! Dann bleibe ich bei meinem "eventuell mit Ausnahme der Endpunkte".

Gruß,
Anna

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]