matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenkonvergenz bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - konvergenz bestimmen
konvergenz bestimmen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvergenz bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:05 Mi 16.04.2014
Autor: Cheris

Aufgabe
gegeben ist die Folge [mm] zn=(4n^2)/(n^2+i4n) [/mm] für  [mm]n\in\IN [/mm]. Bestimmen Sie für x=1  min. 2 verschiedene no, [mm] sodass \left| zn-2 \right|

Ich habe die Ungleichung bis auf n>(2/x)-2i aufgelöst.
Wie soll ich nun eine natürliche Zahl finden , die größer als 2-2i für x=1 ist, denn die komplexen Zahlen sind größer als die Natürlichen Zahlen und in den komplexen Zahlen gibt es keine Ordnungsrelation.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
konvergenz bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:24 Mi 16.04.2014
Autor: reverend

Hallo Cheris, erstmal und ein bisschen spät: [willkommenmr]

Benutze doch bitte unsere LaTeX-basierte Eingabe, dann ist es besser lesbar.

> gegeben ist die Folge [mm]zn=(4n^2)/(n^2+i4n)[/mm] für  [mm]n\in\IN [/mm].

[mm] z_n=\br{4n^2}{n^2+i4n}; n\in\IN, z_n\in\IC [/mm] ??

> Bestimmen Sie für x=1  min. 2 verschiedene no,
> [mm]sodass \left| zn-2 \right|

[mm] ...n_0, [/mm] so dass [mm] |z_n-2|

>  Ich habe die Ungleichung bis auf n>(2/x)-2i aufgelöst.

Wie das? Rechne mal vor. Hast Du die Betragsstriche beachtet?

>  Wie soll ich nun eine natürliche Zahl finden , die
> größer als 2-2i für x=1 ist, denn die komplexen Zahlen
> sind größer als die Natürlichen Zahlen [haee]

[kopfkratz]

> und in den
> komplexen Zahlen gibt es keine Ordnungsrelation.

[ok] Eben. Darum kann Deine Lösung nicht stimmen.

Grüße
reverend

Bezug
                
Bezug
konvergenz bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:55 Mi 16.04.2014
Autor: Cheris

OK ich hab meinen Fehle gefunden ich habe statt die 2 als gleichen bruch zuschreiben, den Bruch mal 2 gerechnet. *schäm*

Also ich habe [mm]\left| \br{4n^2}{n^2+i4n}-2 \right|[/mm]
auf [mm]\left| \br{4n^2}{n^2+i4n}-\br{2n^2+i8n}{n^2+i4n} \right|[/mm] gebracht und dann durch  [mm] n^2 [/mm] geteilt dann komme ich auf
[mm]\left| \br{(2-8i)n}{4in}\right|[/mm] dann würde sich aber n rauskürzen.







Bezug
                        
Bezug
konvergenz bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:50 Mi 16.04.2014
Autor: Fulla


> OK ich hab meinen Fehle gefunden ich habe statt die 2 als
> gleichen bruch zuschreiben, den Bruch mal 2 gerechnet.
> *schäm*

>

> Also ich habe [mm]\left| \br{4n^2}{n^2+i4n}-2 \right|[/mm]
> auf
> [mm]\left| \br{4n^2}{n^2+i4n}-\br{2n^2+i8n}{n^2+i4n} \right|[/mm]

Hallo Cheris!
Das ist schonmal richtig. [ok]

> gebracht und dann durch [mm]n^2[/mm] geteilt dann komme ich auf
> [mm]\left| \br{(2-8i)n}{4in}\right|[/mm] dann würde sich aber n
> rauskürzen.

*hust* Wie bitte?! Ich weiß zwar nicht, was du da genau gemacht hast, aber es ist auf jeden Fall falsch. Es ist doch
         [mm]\left| \br{4n^2}{n^2+i4n}-\br{2n^2+i8n}{n^2+i4n} \right|=\left| \br{2n^2-i8n}{n^2+i4n} \right|[/mm]
HIER kannst du jetzt ein n kürzen:
         [mm]=\left| \br{2n-8i}{n+4i} \right|[/mm]

Mache als nächstes den Nenner reell, indem du mit $n-4i$ erweiterst. Teile dann in Real- und Imaginärteil auf und berechne den Betrag. (Hinweis: das n fällt tatsächlich komplett raus...)


Lieben Gruß,
Fulla
 

Bezug
        
Bezug
konvergenz bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:08 Do 17.04.2014
Autor: fred97

Sollst Du wirklich ein [mm] n_0 [/mm] bestimmen mit

     [mm] |z_n-2|<1 [/mm]  für alle $n [mm] >n_0$ [/mm] ?

Ein solches [mm] n_0 [/mm] gibt es nicht ! Warum ? Darum :

[mm] (z_n) [/mm] konvergiert gegen 4, damit haben wir

     [mm] z_n-2 \to [/mm] 2.

Folglich gibt es ein N [mm] \in \IN [/mm] mit

    [mm] |z_n-2|>1 [/mm]  für alle n>N.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]