konvergenz polynom < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:02 Mi 26.05.2010 | Autor: | snoopy89 |
Aufgabe | Diskutieren Sie die Konvergenz der Folge ( [mm] \wurzel[n]{|P(n)|})_{n\in \IN}, [/mm] wobei
P(x) = [mm] \summe_{k=0}^{m}a_{k}x^{k}
[/mm]
ein reelles Polynom ist. Nutzen Sie hierfür aus, dass [mm] \limes_{n\rightarrow\infty}\wurzel[n]{n}=1 [/mm] ist, und schätzen Sie [mm] |\summe_{k=0}^{m-1}a_{k}n^{k}| [/mm] ab. |
also ich habe die abschätzung schon gemacht. ich kam dann auf
[mm] |\summe_{k=0}^{m-1}a_{k}n^{k}| \le |a|mn^{m-1} [/mm] , wobei [mm] a=max_{k=1,...,n} a_{k} [/mm] ist. diese abschätzung scheint laut meinem tutor auch richtig zu sein und muss hier nicht weiter diskutiert werden.
so dann weiß ich, dass ich [mm] \wurzel[n]{|P(n)|} [/mm] durch eine folge nach unten und eine folge nach oben abschätzen muss, die beide konvergieren. dann konvergiert [mm] \wurzel[n]{|P(n)|} [/mm] laut sandwichtheorie (oder wie man die auch richtig nennen mag) ebenso.
meine abschätzung nach unten:
[mm] |P(n)|=|n^{m}+\summe_{k=0}^{m-1}a_{k}n^{k}| \ge |n^{m}|-|\summe_{k=0}^{m-1}a_{k}n^{k}| \ge n^{m}-|a|mn^{m-1} [/mm] = [mm] n^{m-1}(n-|a|m) \ge 2n^{m-1}
[/mm]
das letzte ungleichzeichen hat mir mein tutor gesagt, jedoch weiß ich nicht wie es zustande kommt. er hat noch gesagt, dass n>|a|m+1 wäre, aber ich verstehe es nicht. kann mir da jemand helfen?
und wenn ich dann zeigen will, dass [mm] \wurzel[n]{2n^{m-1}} [/mm] wirklich konvergiert, muss ich doch den limes davon bilden, oder?
also [mm] \limes_{n\rightarrow\infty}\wurzel[n]{2n^{m-1}} [/mm] = [mm] \limes_{n\rightarrow\infty}\wurzel[n]{2}\wurzel[n]{n^{m-1}} [/mm] = [mm] \limes_{n\rightarrow\infty}\wurzel[n]{2}(\wurzel[n]{n})^{m-1} [/mm] = 1
und damit konvergiert die folge.
geht das so? vielen dank schonmal für die hilfe!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:13 Mi 26.05.2010 | Autor: | leduart |
Hallo
a und m sind fest, n geht gegen unendlich, du musst nur sagen, dass es ein N gibt so dass für alle n>N gilt n>2am (das gilt sicher nicht für alle n. aber für die ersten paar Millionen n ist das doch sowieso endlich!
Gruss leduart
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 22:41 Mi 26.05.2010 | Autor: | snoopy89 |
hmm... ich verstehe nicht ganz, warum du n>2am nimmst. wieso sollte das dann bedeuten, dass [mm] n^{m-1}(n-|a|m) \ge 2n^{m-1} [/mm] gilt?
|
|
|
|
|
> hmm... ich verstehe nicht ganz, warum du n>2am nimmst.
> wieso sollte das dann bedeuten, dass [mm]n^{m-1}(n-|a|m) \ge 2n^{m-1}[/mm]
> gilt?
Ok, schauen wir uns die Ungleichung doch mal an, da steht:
[mm] $n^{m-1}(n-|a|m) \ge 2n^{m-1}$ [/mm] offensichtlich gilt das [mm] \gdw
[/mm]
$(n-|a|m) [mm] \ge [/mm] 2$
Naja, dass das für ausreichend große n gilt ist doch hoffentlich klar?
Egal wie groß du a und m wählst, ab [mm] $n_0 [/mm] = |a|m + 2$ gilt die Ungleichung für alle n.
MFG,
Gono.
|
|
|
|
|
Hallo, ich bin an der gleichen Aufgabe dran wie snoopy, bekomme aber meine "obere" Folge nicht hin, s.d. unsere Folge |P(n)| ^ 1/n [mm] \le [/mm] ist.
Angefangen habe ich wie bei der unteren Abschätzung, aber beim Auseinanderziehen der Betragsstriche, habe ich mit der Addition arbeiten müssen, damit [mm] \le [/mm] gilt.Nur komme ich dann nicht sinnvoll weiter!?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:58 Do 27.05.2010 | Autor: | fred97 |
Sei a wie bei snoopy.
Für n [mm] \in \IN [/mm] ist dann:
$|P(n)| [mm] \le \summe_{k=0}^{m}|a_k|*n^k \le a*\summe_{k=0}^{m}n^m =a*(m+1)*n^m$
[/mm]
FRED
|
|
|
|
|
Vielen Dank.
Bestimme ich dann den Grenzwert so: Lim [mm] (n^m [/mm] * (m+1)) ^1/n für n--> unendl.
?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:09 Do 27.05.2010 | Autor: | fred97 |
Es ist $ [mm] \wurzel[n]{a\cdot{}(m+1)\cdot{}n^m}= \wurzel[n]{a(m+1)}*(\wurzel[n]{n})^m \to [/mm] 1$ für n [mm] \to \infty
[/mm]
FRED
|
|
|
|