matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysiskonvergenzradius
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - konvergenzradius
konvergenzradius < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvergenzradius: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:33 So 19.09.2004
Autor: kaffee

hallo zusammen,

ich bins wiedermal...
bin grad etwas verwirrt durch folgende aufgabe:
bestimme den konvergenzradius der reihe [mm]\sum_{n=1}^{\infty} (-1)^n \bruch{(x-2)^n}{n^2} [/mm]
Im normalfall dh [mm]\sum_{n=1}^{\infty} a_n x^n[/mm] rechnet man ja [mm] \bruch{1}{\lim_{n \to \infty} \wurzel[n]{a_n} [/mm]
man lässt also das [mm]x^n[/mm] weg bei der berechnung.
und nun meine frage darf ich hier analog [mm] (x-2)^n [/mm] weglassen und für den konvergenzradius [mm] \bruch{1}{\lim_{n \to \infty} \wurzel[n]{(-1)^n \bruch{1}{n^2}}[/mm] mit rechnen?
danke & gruss, sarah

        
Bezug
konvergenzradius: Antwort
Status: (Antwort) fertig Status 
Datum: 18:18 So 19.09.2004
Autor: Gnometech

Hallo!

Also, die Antwort ist: ja, Du darfst so rechnen. Eine Potenzreihe hat immer einen Entwicklungspunkt, also einen Punkt, um den sie entwickelt ist. Das ist ein Punkt, an dem sie auf jeden Fall konvergiert. Im "normalen" Fall $ [mm] \sum a_n x^n$ [/mm] ist dieser Punkt gleich 0 (und wenn man für $x$ 0 einsetzt, kommt einfach [mm] $a_0$ [/mm] raus).

Man kann die Theorie aber auf einen beliebigen Entwicklungspunkt $a$ und eine Potenzreihe der Form [mm] $\sum a_n [/mm] (x - [mm] a)^n$ [/mm] erweitern. Das verschiebt die ganze Geschichte nur vom Nullpunkt in den Punkt $a$, d.h. also im Punkt $a$ konvergiert es auf jeden Fall (gegen [mm] $a_0$ [/mm] wie oben) und der Konvergenzradius ist der Radius des Kreises mit Mittelpunkt $a$ - wenn also z.B. der Konvergenzradius gleich $r$ ist, dann bedeutet es, dass die Reihe für alle Punkte $x$ konvergiert mit $|x - a| < r$, also für alle Punkte, die in einem offenen Kreis um $a$ mit Radius $r$ liegen.

Und ebenso gilt für alle $x$ mit $|x - a| > r$, dass die Reihe divergiert. Und auf dem Rand ist wie üblich die große Ungewißheit.

Lange Rede kurzer Sinn: die Theorie funktioniert wie üblich, stell Dir die Ersetzung von $x$ durch $(x - 2)$ einfach als eine Verschiebung der Reihe um 2 vor.

Lars

Bezug
                
Bezug
konvergenzradius: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:47 So 19.09.2004
Autor: kaffee

danke lars, wieso bin ich auf die erklärung nicht selbst gekommen?
wie dem auch sei, jetzt kann ich mindestens ohne bedenken rechnen!!
grüsse, sarah

Bezug
        
Bezug
konvergenzradius: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:09 Mo 20.09.2004
Autor: Marcel

Hallo kaffee,

es wurde ja schon alles gesagt, was gesagt werden musste. :-)
Ich möchte dir nur noch einmal einen Link anbieten, wo du diesbezüglich einige Informationen findest:
[]http://www.mathematik.uni-trier.de/~mueller/
[mm] $\rightarrow$ [/mm] Skript zur Analysis [mm] $\rightarrow$ [/mm] Kapitel 16

PS: Das Zeichen [mm] $\overline{lim}$ [/mm] steht in dem Skript für den $limsup$, siehe auch Definition 5.18 im obigen Skript auf Seite 44 (skriptinterne Zählung oben rechts)!

Viele Grüße
Marcel

Bezug
        
Bezug
konvergenzradius: Potenzreihe!?
Status: (Frage) beantwortet Status 
Datum: 16:43 Fr 07.01.2005
Autor: chris2000


> Im normalfall dh [mm]\sum_{n=1}^{\infty} a_n x^n[/mm] rechnet man ja
> [mm]\bruch{1}{\lim_{n \to \infty} \wurzel[n]{a_n}[/mm]
> man lässt also das [mm]x^n[/mm] weg bei der berechnung.

Das Weglassen, bzw. gleich 1 setzen, darf man doch aber nur, wenn es - wie hier - eine Potenzreihe ist, oder?

Gruß,
Christian

Bezug
                
Bezug
konvergenzradius: Antwort
Status: (Antwort) fertig Status 
Datum: 18:23 Fr 07.01.2005
Autor: moudi

Man setzt nicht x=1, sondern man untersucht, für welche reellen (oder komplexen) Zahlen x die Reihe konvergiert. Dies hängt offenbar nur von den "Koeffizienten" [mm] a_n [/mm] ab. Deshalb dürfen für die Berechnung des Konvergenzradius nur die [mm] a_n [/mm] vorkommen.

mfG Moudi


Bezug
                        
Bezug
konvergenzradius: ok
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:40 Fr 07.01.2005
Autor: chris2000


> Man setzt nicht x=1,

Ja, das war quatsch, sorry.

> sondern man untersucht, für welche
> reellen (oder komplexen) Zahlen x die Reihe konvergiert.
> Dies hängt offenbar nur von den "Koeffizienten" [mm]a_n[/mm] ab.
> Deshalb dürfen für die Berechnung des Konvergenzradius nur
> die [mm]a_n[/mm] vorkommen.

Ok, habe inzwischen die Herleitung dieser Formel gefunden; muss ich mir nochmal genauer anschauen, ist damit dann aber hoffentlich klar.

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]