matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysiskonvex konkav
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - konvex konkav
konvex konkav < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvex konkav: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:01 So 12.06.2005
Autor: ThomasK

Hi

Ich hab folgende aufgabe:

Finden Sie für die folgende Funktion ihre Wendepunkte und Intervalle, auf denen diese konvex bzw. konkav ist.

y = xsin(lnx)

ich hab jetzt die 2te ableitung gebildet:
y'' = cos(lnx)-sin(lnx) / x

jetzt setzt man

0 = cos(lnx)-sin(lnx)

tja und da gibts dann probleme bei mir,
dort die nullstellen auszurechen...

dann setz ich diese werte in f' rein, gucke ob der linke wert < oder > null ist und dann weiß man ja wo die funktionen konvex bzw. konkav sind.

danke schon mal im vorraus.

TK

        
Bezug
konvex konkav: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:25 So 12.06.2005
Autor: kruder77

Hi,

probiere es umzustellen und aus den ln ein e zu zaubern...
dann kommst du auf [mm] e^{(C_{1}*\pi-\bruch{3*\pi}{4})} [/mm] ; [mm] C_{1} \varepsilon \IR [/mm]

gruß
kruder77

Bezug
        
Bezug
konvex konkav: Antwort
Status: (Antwort) fertig Status 
Datum: 17:29 So 12.06.2005
Autor: TranVanLuu

Hi!

Es gilt ja die Beziehung cos [mm] (\pi/2 [/mm] - x) = sin (x), was bedeutet, wenn x = [mm] \pi/4, [/mm] erhalten wir cos [mm] (\pi/4) [/mm] = sin [mm] (\pi/4) [/mm]

Weiter wissen wir, dass sin (k* [mm] \pi [/mm] + x ) = - sin (x) und cos (k * [mm] \pi [/mm] + x ) = - cos (x) gilt.

Damit wissen wir:

cos (k * [mm] \pi [/mm] + [mm] \pi/4) [/mm] = sin (k * [mm] \pi [/mm] + [mm] \pi/4) [/mm]  (I)

Dein Problem:

> 0 = cos(lnx)-sin(lnx)

lässt sich ja hierzu umformen:

cos(lnx) = sin(lnx)

Wenn du das mit (I) vergleichst, solltest du die Lösung jetzt alleine finden.

LG

TranVanLuu

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]