konvexe Hülle < Operations Research < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:45 Do 01.11.2007 | Autor: | Mikke |
Hallo!
habe noch eine kleine Frage und zwar sol ich zeigen das, falls A als Teilmenge des [mm] IR^n [/mm] kompakt ist, auch die konvexe Hülle, k(A), kompakt ist.
Ich muss also zeigen, dass k(A) beschränkt und abgeschlossen ist, denn hieraus würde die Kompaktheit folgen.
Wie kann ich jetzt hier die Abgeschlossenheit zeigen? Die Beschränktheit habe ich. Ich denke mal, dass man irgendwie den Satz von Bolzano Weierstrass benutzen muss? Aber wie genau?
danke schon einmal.
MfG Mikke
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:27 Do 01.11.2007 | Autor: | koepper |
Hallo,
das ist nicht ganz trivial.
Einen Beweis findest du zB hier.
Gruß
Will
|
|
|
|