matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / Vektorrechnungkoordinatentransformation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra / Vektorrechnung" - koordinatentransformation
koordinatentransformation < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

koordinatentransformation: rangehesweise
Status: (Frage) beantwortet Status 
Datum: 18:39 Fr 14.01.2005
Autor: ghostdog

ich brauche mal hilfe für diese aufgabe da ich nicht genau weis wie ich an diese aufgabe vorgehen soll:geg.:
durch den punkt [mm] O_{1} [/mm] und den vektoren  [mm] \overrightarrow{u} [/mm] , [mm] \overrightarrow{v} [/mm]  , [mm] \overrightarrow{w} [/mm] sei ein Koordinatensystem,
das Koodinatensystem I gegeben, das koordinatensystem II gegeben.
wir verwenden nachfolgende bezeichnungen: es sei P ein beliebiger Punkt.
Es seinen x1,y1,z1 die koordinaten des punktes P im koordinatensystem I.
dann bezeichen wir P auch als [mm] P_{I}(x1,y1,z1). [/mm]
Es seinen x2,y2,z2 die koordinaten des punktes P im koordinatensystem II.
dann bezeichen wir P auch als [mm] P_{II}(x2,y2,z2). [/mm]
gegeben sei
[mm] \overrightarrow{r}= \overrightarrow{u} [/mm]  +   [mm] \overrightarrow{v} [/mm]  
[mm] \overrightarrow{s}= \overrightarrow{v} [/mm]
[mm] \overrightarrow{t}= [/mm]     -   [mm] \overrightarrow{v}+\overrightarrow{w} [/mm]
Gegeben sei ferner [mm] O_{2}=O_{2I}(1,-1,2).(O_{2} [/mm] als punkt im koordinatensystem I)
a) bestimmen sie dazu die koordinaten von  als punkt im koordinatensystem II!
b)Bestimmen sie [mm] P_{I}(x1,y1,z1) [/mm] zu [mm] P_{II} [/mm] (3,1,-1)
c)Bestimmen sie  [mm] P_{II}(x1,y1,z1) [/mm] zu [mm] P_{I}(4,4,1) [/mm]


super cool ware es wenn es mir mal jemand vorrechnen kann ich weis das es sehr schreibaufwennig ist aber es ist immer besser nachzuvollziehen



        
Bezug
koordinatentransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 20:16 Fr 14.01.2005
Autor: moudi

Hallo ghostdog

Es ist nicht alles klar, wies gemeint ist.
Ueberlege dir mal was [mm] $P_I(x_1,y_1,z_1)$ [/mm] bedeutet.
Man kann das so deuten, dass der Ortsvektor [mm] $\overrightarrow{O_1P}$ [/mm] gegeben ist durch
[mm] $\overrightarrow{O_IP}=x_1\vec u+y_1\vec v+z_1\vec [/mm] v$
analog für [mm] $P_{II}(x_2,y_2,z_2)$ $\overrightarrow{O_{II}P}=x_2\vec r+y_2\vec s+z_2\vec [/mm] t$

Jetzt weiss man dass [mm] $\overrightarrow{O_IP}=\overrightarrow{O_IO_{II}}+\overrightarrow{O_{II}P}$. [/mm]

Für [mm] P_{II}(3,1,-1) [/mm] ergibt sich also
[mm] $\overrightarrow{O_IP}=(\vec u-\vec v+2\vec w)+(3\vec r+\vec s-\vec [/mm] t)$

Jetzt ersetzt man [mm] $\vec r,\vec s,\vec [/mm] t$ gemäss den Angaben und man erhält
[mm] $\overrightarrow{O_IP}=(\vec u-\vec v+2\vec w)+(3(\vec u+\vec v)+\vec v-(-\vec v+\vec [/mm] w))$

Zusammenfassen ergibt [mm] $\overrightarrow{O_IP}=4\vec u+4\vec v+\vec [/mm] w$. Daher ist [mm] $P_I(4,4,1)$. [/mm]

So jetzt habe ich eine Aufgabe vorgerechnet. Die andere kannst du selber machen.
Du kannst ja die Antwort posten und überprüfen lassen.

mfG Moudi



Bezug
                
Bezug
koordinatentransformation: vielen dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:16 Fr 14.01.2005
Autor: ghostdog


wenn man erst mal die ransgehensweise sieht dann ist das garnicht so schwer vielen dank für die ausführliche antwort mit beispielrechnung

Bezug
                        
Bezug
koordinatentransformation: danke aber c wie mache ich das
Status: (Frage) beantwortet Status 
Datum: 21:34 Fr 14.01.2005
Autor: ghostdog

aber einproblem stehlt sich mir noch wenn ich jetzt den punkt [mm] P_{II}(x1,y1,z1) [/mm] zu [mm] P_{I}(4,4,1) [/mm]
ausdrücken soll dann heist das doch das ich die vekoren durch  [mm] \overrightarrow{r} [/mm] , [mm] \overrightarrow{s} [/mm] , [mm] \overrightarrow{t} [/mm]
ausdrücken soll aber gegeben habe ich doch nur denn vektor  [mm] \overrightarrow{O_{I}O_{II}} [/mm]
ausgedrückt in koordinatensystem I
wie mache ich das
ich weis glaube ich das der gesuchte vetor sein müsste
[mm] \overrightarrow{O_{II}P}=-\overrightarrow{O_{I}O_{II}}+\overrightarrow{O_{I}P} [/mm]
aber diese vektoren sind alle durch
[mm] \overrightarrow{u} [/mm] , [mm] \overrightarrow{v} [/mm] , [mm] \overrightarrow{w} [/mm]
ausgedrückt
und ich soll diese doch durch die vektoren des II koordinatensystem
[mm] \overrightarrow{r} [/mm] , [mm] \overrightarrow{s} [/mm] , [mm] \overrightarrow{t} [/mm]
ausdrücken? wie mache ich das

Bezug
                                
Bezug
koordinatentransformation: schon gut ich habs
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:49 Fr 14.01.2005
Autor: ghostdog

habe einfach nur die gegebenden formel umgestelt danke noch mal

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]