kreis im 3d raum < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 09:20 Fr 12.01.2007 | Autor: | kons |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hi Kann mir jemand erklären wie ich im drei-dimensionalen raum die koordinaten von punkten auf einer kreisbahn herausbekomme. dabei kenne ich den mittelpunkt des kreises, den radius, den winkel des kreises im raum, wobei bei mir 0 grad den kreis parrallel zur y-achse darstellt, und den winkel zwischen der x-achse und der geraden die den punkt auf der geraden schneidet.
vielen dank
kons
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:37 Fr 12.01.2007 | Autor: | MeeMa |
> Hi Kann mir jemand erklären wie ich im drei-dimensionalen
> raum die koordinaten von punkten auf einer kreisbahn
> herausbekomme. dabei kenne ich den mittelpunkt des kreises,
> den radius, den winkel des kreises im raum, wobei bei mir 0
> grad den kreis parrallel zur y-achse darstellt, und den
> winkel zwischen der x-achse und der geraden die den punkt
> auf der geraden schneidet.
> vielen dank
> kons
Also eine Kreisgleichung im Raum lautet:
[mm] (x-x_M)^2 + (y-y_M)^2 + (z-z_M)^2 + R^2 = 0 [/mm]
wobei: [mm] $x_M \, y_M \, z_M$ [/mm] die Koordinaten des Mittelpunkt und R = Radius des Kreises ist
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:54 Sa 03.02.2007 | Autor: | slain |
@MeeMa: Das ist keine Kreisgleichung, sondern eine Kugelgleichung. Mit der von dir genannten Gleichung kann man alle Punkte auf einer Kugel bestimmen.
@kons
Um die Punkte auf einen Kreis im Raum mit Winkelangabe zu bestimmen, brauchst du diese Gleichung:
[mm] \vec{P}=\vec{M}+cos(\alpha)*\vec{s}+sin(\alpha)*\vec{t}
[/mm]
[mm] \vec{P}=Ortsvektor [/mm] des Punktes
[mm] \vec{M}=Ortsvektor [/mm] des Mittelpunktes
[mm] \vec{s}=1. [/mm] Spannvektor des Kreises
[mm] \vec{t}= [/mm] 2. Spannvektor des Kreises
Vektor s und Vektor t sollten für einen Kreis dieselbe Länge haben und senkrecht zueinander stehen. Bei unterschiedlichen Winkel dieser beiden Spannvektoren oder/und bei unterschiedlicher Länge ergeben sich Ellipsen.
Das Kreuzprodukt aus t und s-Vektor ist auch der Normalenvektor der Ebene, in der sich der Kreis oder die Ellipse befindet.
|
|
|
|
|
Hallo, ich stand vor dem gleichen Problem wie kons, der Großteil hat sich durch slains Antwort auch erledigt, allerdings hatte ich in der Schule noch keine Vektorrechnung und musste mir deshalb per Internetseiten alles selbst beibringen.
Mein Problem ist nun: Welche Werte definieren den Spannvektor?
Falls die Frage etwas Schwammig war, so wie ich das verstanden habe besteht der Ortsvektor im 3 dimensionalen Raum aus einer x-, y- und z-Koordinate. Woraus setzen sich dann die Spannvektoren für den Kreis zusammen?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:34 Sa 09.02.2008 | Autor: | weduwe |
> Hallo, ich stand vor dem gleichen Problem wie kons, der
> Großteil hat sich durch slains Antwort auch erledigt,
> allerdings hatte ich in der Schule noch keine
> Vektorrechnung und musste mir deshalb per Internetseiten
> alles selbst beibringen.
> Mein Problem ist nun: Welche Werte definieren den
> Spannvektor?
> Falls die Frage etwas Schwammig war, so wie ich das
> verstanden habe besteht der Ortsvektor im 3 dimensionalen
> Raum aus einer x-, y- und z-Koordinate. Woraus setzen sich
> dann die Spannvektoren für den Kreis zusammen?
einen vektor kannst du frei wählen, er muß nur in der ebene E des kreises liegen und die länge r haben, also einen beliebigen einheitsvektor [mm] \vec{e}_1 [/mm] wählen und mit r multiplizieren, den 2. bekommst du über das kreuzprodukt mit dem normalenvektor der ebene, also
[mm] \vec{v}_2=r\cdot\frac{\vec{e}_1\times\vec{n}}{|\vec{e}_1\times\vec{n}|}
[/mm]
|
|
|
|
|
Sorry, dass ich nochmal nachhaken muss, aber ich hab gestern zum ersten mal überhaupt etwas über vektoren gelesen und deshalb noch etwas Probleme mit dem Nachvollziehen. Spannvektor 1 ins mitlerweile klar, aber mit dem Normalvektor der Ebene kann ich noch nicht so gut umgehen.
Es wäre nett, wenn mir jemand die Herleitung des 2. Vektors nochmal genauer (z.b. als Komponentenweise Darstellung) erklären könnte...
Hoffe das passt noch zum Thema.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:57 Sa 09.02.2008 | Autor: | weduwe |
gerne,
sei eine ebene E , in der der kreis liegt, gegeben mit [mm]E: x-2y+3z=5[/mm], dann hat sie den normalenvektor [mm] \vec{n}=\vektor{1\\-2\\3}. [/mm]
nun suchst du dir einen vektor der in E liegt, z.b [mm] \vec{u}=\vektor{2\\1\\0}.
[/mm]
er liegt sicher in E, da das entsprechende skalarprodukt = 0.
nun bestimmst du über das vektorprodukt einen weiteren vektor [mm] \vec{v} [/mm] ,der senkrecht auf [mm] \vec{n} [/mm] steht, also E liegt, und auch senkrecht auf [mm] \vec{u} [/mm] steht.
[mm] \vec{v}=\vec{n}\times\vec{u}=\vektor{1\\-2\\3}\times\vektor{2\\1\\0}=\vektor{-3\\6\\-3}\sim\vektor{1\\-2\\1}
[/mm]
nun mußt du beide noch normieren - also auf die länge 1 stutzen und mit r multiplizieren.
deine kreiusgleichung lautet damit
K: [mm] \vec{x}=\vec{m}+\frac{r}{\sqrt{5}}\vektor{2\\1\\0}cos\alpha+\frac{r}{\sqrt{6}}\vektor{1\\-2\\1}sin\alpha
[/mm]
|
|
|
|