matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenlim f'(x)=f'(x_{0})
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionen" - lim f'(x)=f'(x_{0})
lim f'(x)=f'(x_{0}) < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lim f'(x)=f'(x_{0}): Idee - Korrektur
Status: (Frage) beantwortet Status 
Datum: 20:32 Di 15.01.2013
Autor: silfide

Aufgabe
Sei [mm] I\subset\IR [/mm] ein Intervall. [mm] f:I\to\IR [/mm] in [mm] x_{0} \in [/mm] I stetig. Es exsistiere ein [mm] \delta>0 [/mm] so, dass f auf [mm] U_{\delta}(x_{0}) [/mm] \ [mm] \{x_{0}\} [/mm] differenzierbar ist. Exsistiert [mm] \limes_{x\rightarrow\ x_{0}} [/mm] f'(x), so ist f in [mm] x_{0} [/mm] differenzierbar und f' ist in [mm] x_{0} [/mm] stetig, d.h.
[mm] \limes_{x\rightarrow\ x_{0}} f'(x)=f'(x_{0}) [/mm]

Hallo Leute,

habe nun obige Aufgabe zu lösen und ne Idee...

Sei [mm] \limes_{x\rightarrow\ x_{0}} [/mm] f'(x)=A

Nach MWS exs. [mm] \bruch{f(x)-f(x_{0})}{x-x_{0}}=f'(G_{x_{0}}) [/mm] für ein G zwischen [mm] x_{0} [/mm] und x mit
[mm] \limes_{x\rightarrow\ x_{0}}\bruch{f(x)-f(x_{0})}{x-x_{0}}=\limes_{x\rightarrow\ x_{0}}f'(G_{x_{0}})=A [/mm]

dann [mm] (x\rightarrow\ x_{0} [/mm] folgt [mm] G_{x_{0}}\rightarrow\ x_{0}) [/mm]
Daraus folgt f diffbar in [mm] x_{0} [/mm] und es gilt [mm] f'(x_{0})=A=\limes_{x\rightarrow\ x_{0}} [/mm] f'(x)

Wobei G dieses andere Zeichen ist, so ein großes geschwungendes E (keine Ahnung wie es jetzt heißt).

Kann man das so tun?? Also ist es schlüssig??

Silfide

        
Bezug
lim f'(x)=f'(x_{0}): Antwort
Status: (Antwort) fertig Status 
Datum: 22:31 Di 15.01.2013
Autor: Helbig

Hallo Silfide,

> Sei [mm]I\subset\IR[/mm] ein Intervall. [mm]f:I\to\IR[/mm] in [mm]x_{0} \in[/mm] I
> stetig. Es exsistiere ein [mm]\delta>0[/mm] so, dass f auf
> [mm]U_{\delta}(x_{0})[/mm] \ [mm]\{x_{0}\}[/mm] differenzierbar ist.
> Exsistiert [mm]\limes_{x\rightarrow\ x_{0}}[/mm] f'(x), so ist f in
> [mm]x_{0}[/mm] differenzierbar und f' ist in [mm]x_{0}[/mm] stetig, d.h.
>  [mm]\limes_{x\rightarrow\ x_{0}} f'(x)=f'(x_{0})[/mm]
>  Hallo
> Leute,
>  
> habe nun obige Aufgabe zu lösen und ne Idee...
>
> Sei [mm]\limes_{x\rightarrow\ x_{0}}[/mm] f'(x)=A
>  
> Nach MWS exs. [mm]\bruch{f(x)-f(x_{0})}{x-x_{0}}=f'(G_{x_{0}})[/mm]
> für ein G zwischen [mm]x_{0}[/mm] und x mit
>  [mm]\limes_{x\rightarrow\ x_{0}}\bruch{f(x)-f(x_{0})}{x-x_{0}}=\limes_{x\rightarrow\ x_{0}}f'(G_{x_{0}})=A[/mm]
>  
> dann [mm](x\rightarrow\ x_{0}[/mm] folgt [mm]G_{x_{0}}\rightarrow\ x_{0})[/mm]

Hier wäre [mm] $G_x$ [/mm] statt [mm] $G_{x_0}$ [/mm] zu schreiben, denn nur so erhältst Du  [mm] $G_x\to x_0$ [/mm] für [mm] $x\to x_0\,.$ [/mm]

>  
> Daraus folgt f diffbar in [mm]x_{0}[/mm] und es gilt
> [mm]f'(x_{0})=A=\limes_{x\rightarrow\ x_{0}}[/mm] f'(x)
>  
> Wobei G dieses andere Zeichen ist, so ein großes
> geschwungendes E (keine Ahnung wie es jetzt heißt).

Du meinst wohl xi, also [mm] $\xi\,.$ [/mm]

>  
> Kann man das so tun?? Also ist es schlüssig??

Ja!

Gruß,
Wolfgang

Bezug
                
Bezug
lim f'(x)=f'(x_{0}): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:57 Di 15.01.2013
Autor: silfide

Ja, hast Recht. Danke dir, Wolfgang!

Mia

Bezug
        
Bezug
lim f'(x)=f'(x_{0}): Antwort
Status: (Antwort) fertig Status 
Datum: 23:23 Di 15.01.2013
Autor: Marcel

Hallo Silfide,

> Sei [mm]I\subset\IR[/mm] ein Intervall. [mm]f:I\to\IR[/mm] in [mm]x_{0} \in[/mm] I
> stetig. Es exsistiere ein [mm]\delta>0[/mm] so, dass f auf
> [mm]U_{\delta}(x_{0})[/mm] \ [mm]\{x_{0}\}[/mm] differenzierbar ist.
> Exsistiert [mm]\limes_{x\rightarrow\ x_{0}}[/mm] f'(x), so ist f in
> [mm]x_{0}[/mm] differenzierbar und f' ist in [mm]x_{0}[/mm] stetig, d.h.
>  [mm]\limes_{x\rightarrow\ x_{0}} f'(x)=f'(x_{0})[/mm]

Dein Beweis wurde ja schon als richtig erkannt. Alternativ:
Es gilt (o.E. sei stets $x [mm] \in U_\delta(x_0) \setminus \{x_0\}$) [/mm]
[mm] $$\lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0}=\lim_{x \to x_0} \frac{\overbrace{f\,'(x)}^{=(f(x)-f(x_0))\,'}}{\underbrace{1}_{=(x-x_0)\,'}}=\lim_{x \to x_0}f\,'(x)$$ [/mm]
nach de l'Hospital, also existiert [mm] $f\,'(x_0)$ [/mm] (weil nach Voraussetzung
[mm] $\lim_{x \to x_0}f\,'(x)$ [/mm] existiert(!)) mit
[mm] $$f\,'(x_0)=\lim_{x \to x_0}f\,'(x)\,.$$ [/mm]

Insbesondere folgt daraus die Stetigkeit von [mm] $f\,'$ [/mm] an der Stelle [mm] $x_0\,.$ [/mm]
Beachte dabei: Wegen der Stetigkeit von [mm] $f\,$ [/mm] an [mm] $x_0$ [/mm] gilt neben [mm] $(x-x_0) \to [/mm] 0$
auch [mm] $(f(x)-f(x_0)) \to 0\$ [/mm] bei $x [mm] \to x_0\,,$ [/mm] so dass de l'Hospital für den
Fall [mm] "$0/0\,$" [/mm] anwendbar ist.

P.S. Der "Witz" an der Sache ist aber, dass ich da 'eigentlich' auch nichts
wirklich anders gemacht habe als Du. Denn de l'Hospital beweist man ja
(etwa) mit dem erweiterten Mittelwertsatz der Differentialrechnung. Und der
erweiterte Mittelwertsatz trägt den Namen "erweitert" ja nicht ohne Grund.
Ich wollte nur drauf hinaus: Man könnte auch de l'Hospital anwenden...
(Zumindest hoffe ich, dass ich da gerade nichts übersehe und mich nicht
doch täusche...)

P.P.S. Du siehst hier übrigens, dass man i.a. nicht auf die Voraussetzung der
Existenz von [mm] $\lim_{x \to x_0}f\,'(x)$ [/mm] verzichten kann - gerade in der Lösung,
bei der man de l'Hospital anwendet!

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]