matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitlimes, Stetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stetigkeit" - limes, Stetigkeit
limes, Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

limes, Stetigkeit: Richtiger Weg?
Status: (Frage) beantwortet Status 
Datum: 10:16 Sa 21.04.2012
Autor: Grischa

Aufgabe
Berechnen Sie

[mm]\underset{n \rightarrow \infty }{lim} \left( cos \left( \frac{\sqrt{10n^2-n}-n}{2n+3} \right) \right) [/mm]


An welcher Stelle der Rechnung wird benutzt, dass die Cosinusfunktion stetig ist? Wo wird die Stetigkeit der Wurzelfunktion benutzt?


Idee:

[mm]\underset{n \rightarrow \infty }{lim} \left( cos \left( \frac{\sqrt{n^2}}{n} \frac{\sqrt{10-\frac{1}{n}}-1}{2 + \frac{3}{n}} \right) \right) [/mm]
[mm]cos \left( \underset{n \rightarrow \infty }{lim} \left( \frac{\sqrt{n^2}}{n} \frac{\sqrt{10-\frac{1}{n}}-1}{2 + \frac{3}{n}} \right) \right) [/mm]
[mm]cos \left( \frac{\sqrt{10}-1}{2} \right) [/mm]


(1) Durch die Stetigkeit von Cos, kann ich ja den Limes in die Klammer ziehen.
(2) Die Wurzelfunktion habe ich aber nicht wirklich berücksichtigt?!

Viele Grüße





        
Bezug
limes, Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 10:35 Sa 21.04.2012
Autor: tobit09

Hallo nochmal,


> [mm]\underset{n \rightarrow \infty }{lim} \left( cos \left( \frac{\sqrt{n^2}}{n} \frac{\sqrt{10-\frac{1}{n}}-1}{2 + \frac{3}{n}} \right) \right)[/mm]
>
> [mm]cos \left( \underset{n \rightarrow \infty }{lim} \left( \frac{\sqrt{n^2}}{n} \frac{\sqrt{10-\frac{1}{n}}-1}{2 + \frac{3}{n}} \right) \right)[/mm]

>

> (1) Durch die Stetigkeit von Cos, kann ich ja den Limes in
> die Klammer ziehen.

Ja, vorausgesetzt, der Term in der Klammer konvergiert.

(Z.B. [mm] $\lim_{n\to\infty}\cos(n*2\pi)=\lim_{n\to\infty}1=1$, [/mm] aber NICHT [mm] $\lim_{n\to\infty}\cos(n*2\pi)=\cos(\lim_{n\to\infty}n*2\pi)$, [/mm] da der letzte Limes gar nicht existiert (bzw. [mm] $\infty$ [/mm] ist).)


> [mm]cos \left( \frac{\sqrt{10}-1}{2} \right)[/mm]
>  
>  (2) Die Wurzelfunktion habe ich aber nicht wirklich
> berücksichtigt?!  

Zwischenschritte:

[mm] $\cos\left(\lim_{n\to\infty}\left( \frac{\sqrt{n^2}}{n} \frac{\sqrt{10-\frac{1}{n}}-1}{2 + \frac{3}{n}} \right) \right)$ [/mm]
[mm] $=\cos\left(\lim_{n\to\infty}\left( \frac{\sqrt{10-\frac{1}{n}}-1}{2 + \frac{3}{n}} \right) \right)$ [/mm]
[mm] $=\cos\left(\frac{\lim_{n\to\infty}(\sqrt{10-\frac{1}{n}}-1)}{\lim_{n\to\infty}(2 + \frac{3}{n})} \right)$ [/mm]
[mm] $=\cos\left(\frac{\lim_{n\to\infty}\sqrt{10-\frac{1}{n}}-\lim_{n\to\infty}1}{\lim_{n\to\infty}(2 + \frac{3}{n})} \right)$ [/mm]
Und nun die Stetigkeit der Wurzelfunktion:
[mm] $=\cos\left(\frac{\sqrt{\lim_{n\to\infty}(10-\frac{1}{n})}-\lim_{n\to\infty}1}{\lim_{n\to\infty}(2 + \frac{3}{n})} \right)$ [/mm]
[mm] $=\ldots$ [/mm]


Viele Grüße
Tobias

Bezug
                
Bezug
limes, Stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:03 Sa 21.04.2012
Autor: Grischa

Super, vielen Dank für die detaillierte Ausführung. [respekt2]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]