matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Matrizenlin. Abhängigkeit von Matrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - lin. Abhängigkeit von Matrizen
lin. Abhängigkeit von Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lin. Abhängigkeit von Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:10 Mi 09.04.2008
Autor: Bochi

Aufgabe
Gegeben sind folgenden schiefsymmetrische 3x3 Matrizen.

A= [mm] \pmat{ 0 & 1 & 2 \\ -1 & 0 & 1 \\ -2 & -1 & 0} [/mm] B= [mm] \pmat{ 0 & 1 & -2 \\ -1 & 0 & 1 \\ 2 & -1 & 0} [/mm] C= [mm] \pmat{ 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0} [/mm] D= [mm] \pmat{ 0 & 1 & 0 \\ -1 & 0 & -1 \\ 0 & 1 & 0} [/mm]

(a) Zeigen sie, dass A, B, C und D linear abhängig sind.
(b) Welche der gegebenen Matrizen liegt in Lin(A,B)?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Aufgabe a) habe ich gelöst (0 kann nichttrivial dargestellt werden).

A und B sind offensichtlich in Lin(A,B), Matrix C auch weil sie sich durch A und B "kombinieren" lässt. Ich komme mit der Matrix D nicht klar.
Man sagte mir man müsste 0=aA(x) + bB(x) + dD(x) in einem LGS darstellen und prüfen ob man auf den vollen Rang kommt. -> Matrizen linear unabhängig.

Aber wie rechnet man so eine Aufgabe mit Matrizen? Mit Vektoren ist das ja kein Problem aber mit Matrizen? Ich kriegs iwie nich hin. Und was besagt A(x)? Wieso wird die Matrix von einem x abhängig gemacht? Ich will doch nur ein a, ein b und ein d haben.

        
Bezug
lin. Abhängigkeit von Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:13 Mi 09.04.2008
Autor: angela.h.b.


> Gegeben sind folgenden schiefsymmetrische 3x3 Matrizen.
>  
> A= [mm]\pmat{ 0 & 1 & 2 \\ -1 & 0 & 1 \\ -2 & -1 & 0}[/mm] B= [mm]\pmat{ 0 & 1 & -2 \\ -1 & 0 & 1 \\ 2 & -1 & 0}[/mm]
> C= [mm]\pmat{ 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0}[/mm] D= [mm]\pmat{ 0 & 1 & 0 \\ -1 & 0 & -1 \\ 0 & 1 & 0}[/mm]
>  
> (a) Zeigen sie, dass A, B, C und D linear abhängig sind.
>  (b) Welche der gegebenen Matrizen liegt in Lin(A,B)?
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Aufgabe a) habe ich gelöst (0 kann nichttrivial
> dargestellt werden).
>
> A und B sind offensichtlich in Lin(A,B), Matrix C auch weil
> sie sich durch A und B "kombinieren" lässt. Ich komme mit
> der Matrix D nicht klar.

Hallo,

[willkommenmr].

Eigentlich hast Du alles notwendige schon selbst gesagt.

Du mußt prüfen, ob Du D als Linearkombination von A unB darstellen kannst, ob es also a,b gibt mit

aA+bB=D, also

[mm] \pmat{ 0 & 1 & 0 \\ -1 & 0 & -1 \\ 0 & 1 & 0}=a*\pmat{ 0 & 1 & 2 \\ -1 & 0 & 1 \\ -2 & -1 & 0}+b*\pmat{ 0 & 1 & -2 \\ -1 & 0 & 1 \\ 2 & -1 & 0} [/mm]

[mm] =\pmat{ 0 & a & 2a \\ -a & 0 & a \\ -2a & -a & 0}+\pmat{ 0 & b & -2b \\ ... & ... & ... \\ ...& ... & ...} [/mm]

[mm] =\pmat{ 0 & a+b & 2a-2b \\ ... & ... & ... \\ ...& ... & ...}. [/mm]

(Dann mußt Du komponentenweise vergleichen. Das liefert Dir ein GS mit 9 Gleichungen und zwei Variablen, welches Du auf Lösbarkeit untersuchen mußt.)

==>

0=0
1=a+b
0=2a-2b
[mm] \vdots [/mm]

Versuch's mal, bei weiteren Fragen melde Dich.

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]