matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Abbildungenlineare Abb. und Dimension
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Abbildungen" - lineare Abb. und Dimension
lineare Abb. und Dimension < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Abb. und Dimension: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:22 Mo 28.12.2009
Autor: simplify

Aufgabe
Welche Abbildungen sind linear?
[mm] f_{1} [/mm] := [mm] \IR^{n} \mapsto \IR, [/mm] (x1,...,xn) [mm] \mapsto [/mm] x1 + ... + xn
[mm] f_{2} [/mm] := [mm] \IR^{2} \mapsto \IR, [/mm] (x,y) [mm] \mapsto [/mm] xy
[mm] f_{3} [/mm] := [mm] \IR^{2} \mapsto \IR^{3}, [/mm] (x,y) [mm] \mapsto [/mm] (x+1,2y,x+y)
Gegebenfalls die Dimension des Bildraums und des Kerns und eine Basis des Kerns angeben.

Hallo,
ich würde sagen,dass [mm] f_{2} [/mm] linear ist ,aber ich habe allgemein ein kleines Verständnisproblem. Kann mir jemand helfen?

        
Bezug
lineare Abb. und Dimension: Antwort
Status: (Antwort) fertig Status 
Datum: 15:34 Mo 28.12.2009
Autor: schachuzipus

Hallo simplify,

> Welche Abbildungen sind linear?
>  [mm]f_{1}[/mm] := [mm]\IR^{n} \mapsto \IR,[/mm] (x1,...,xn) [mm]\mapsto[/mm] x1 + ...
> + xn
>  [mm]f_{2}[/mm] := [mm]\IR^{2} \mapsto \IR,[/mm] (x,y) [mm]\mapsto[/mm] xy
>  [mm]f_{3}[/mm] := [mm]\IR^{2} \mapsto \IR^{3},[/mm] (x,y) [mm]\mapsto[/mm]
> (x+1,2y,x+y)
>  Gegebenfalls die Dimension des Bildraums und des Kerns und
> eine Basis des Kerns angeben.
>  Hallo,
>  ich würde sagen,dass [mm]f_{2}[/mm] linear ist

[notok]

Da hast du genau daneben gegriffen.

Es ist zB. [mm] $2\cdot{}f_2((x,y))=2xy\neq 4xy=2x\cdot{}2y=f_2((2x,2y))=f_2(2\cdot{}(x,y))$ [/mm] (für [mm] $x\cdot{}y\neq [/mm] 0$)

> ,aber ich habe
> allgemein ein kleines Verständnisproblem. Kann mir jemand
> helfen?


Worin liegt das Verständnisproblem?

Wie habt ihr "lineare Abbildung" definiert?

Da gibt's doch 2 Bedingungen nachzuprüfen (bzw. eine, wenn man's zusammenfasst).

Krame also die Definition heraus und rechne es nach oder finde, wie ich bei [mm] $f_2$ [/mm] ein Gegenbsp.

Gruß

schachuzipus

Bezug
                
Bezug
lineare Abb. und Dimension: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:06 Di 29.12.2009
Autor: simplify

Danke für die Reaktion.
Ich hab mal bei den anderen beiden f's nachgerechnet und stelle fest,dass [mm] f_{1} [/mm] linear ist und [mm] f_{3} [/mm] nicht.Kann mir da jemand zustimmen?
Ich denke auch,dass sich mein Verständnisproblem aufgelöst hat.

Bezug
                        
Bezug
lineare Abb. und Dimension: Antwort
Status: (Antwort) fertig Status 
Datum: 12:30 Di 29.12.2009
Autor: schachuzipus

Hallo simplify,

> Danke für die Reaktion.
>  Ich hab mal bei den anderen beiden f's nachgerechnet und
> stelle fest,dass [mm]f_{1}[/mm] linear ist und [mm]f_{3}[/mm] nicht. [ok]

> Kann mir da jemand zustimmen?

Ja, ich! ;-)

Wie lautet dein Argument, dass [mm] $f_3$ [/mm] nicht linear ist?



>  Ich denke auch,dass sich mein Verständnisproblem
> aufgelöst hat.


Gruß

schachuzipus

Bezug
                                
Bezug
lineare Abb. und Dimension: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:48 Di 29.12.2009
Autor: simplify

ich habe die eigenschaften überprüft und kam auf einen widerspruch:

[mm] \lambda f(x,y)=\lambda(x+1,2y,x+y)=(\lambda(x+1),\lambda(2y),\lambda(x+y))=(\lambda x+\lambda,\lambda2y,\lambda x+\lambda y)\not=(\lambda x+1,2(\lambda y),\lambda x+\lambda y))=f(\lambda x,\lambda [/mm] y)

Bezug
                                        
Bezug
lineare Abb. und Dimension: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:58 Di 29.12.2009
Autor: schachuzipus

Hallo nochmal,

ja, sehr gut, alternativ geht auch die Additivität leicht kaputt!

Bis dann

schachuzipus

Bezug
                                                
Bezug
lineare Abb. und Dimension: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:06 Di 29.12.2009
Autor: simplify

stimmt.
vielen dank für die hilfe.
lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]