lineare Abbildung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Ist die Abbildung linear? Begründen Sie. Dabei seien [mm] n,m\in\IN [/mm] , [mm] a\in\IR [/mm] und [mm] A\in\IR^{m\times n} [/mm] gegeben.
(c) [mm] $f:C^1(\IR)\to C^0(\IR)$ [/mm] mit $(f(u))(x)=u'(x)$
Kommentar zur Notation: [mm] C^1(\IR) [/mm] steht für den Vektorraum aller einmal stetig differenzierbaren Funktionen [mm] u:\IR\to\IR [/mm] und [mm] C^0(\IR) [/mm] für den Vektorraum aller stetigen Funktionen [mm] u:\IR\to\IR [/mm] . |
Hallo,
Ich stehe vor einem kleinen Problem, die Aufgabe oben gehört zu meiner Mathehausübung. Die Teilaufgaben (a) und (b) habe ich mittels Additivität und Homogenität bewiesen bzw. widerlegt. Bei der (c) hier weiß ich nicht so recht, wie ich anfangen soll. Zumal ich die Notation trotz Anmerkung nicht verstehe, kann mir jemand von euch weiterhelfen?
Danke und Gruß,
miniscout
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:28 Sa 03.05.2008 | Autor: | felixf |
Hallo miniscout,
> Ist die Abbildung linear? Begründen Sie. Dabei seien
> [mm]n,m\in\IN[/mm] , [mm]a\in\IR[/mm] und [mm]A\in\IR^{m\times n}[/mm] gegeben.
> (c) [mm]f:C^1(\IR)\to C^0(\IR)[/mm] mit [mm](f(u))(x)=u'(x)[/mm]
>
> Kommentar zur Notation: [mm]C^1(\IR)[/mm] steht für den Vektorraum
> aller einmal stetig differenzierbaren Funktionen
> [mm]u:\IR\to\IR[/mm] und [mm]C^0(\IR)[/mm] für den Vektorraum aller stetigen
> Funktionen [mm]u:\IR\to\IR[/mm] .
>
> Ich stehe vor einem kleinen Problem, die Aufgabe oben
> gehört zu meiner Mathehausübung. Die Teilaufgaben (a) und
> (b) habe ich mittels Additivität und Homogenität bewiesen
> bzw. widerlegt. Bei der (c) hier weiß ich nicht so recht,
> wie ich anfangen soll. Zumal ich die Notation trotz
> Anmerkung nicht verstehe, kann mir jemand von euch
> weiterhelfen?
Vorweg: Funktionenvektorraeume sind alles andere als anschaulich. Man muss sich einfach dran gewoehnen, dass Vektoren nicht Pfeile sind sondern irgendwelche Objekte, von denen man halt nur weiss das man sie zusammenaddieren kann und mit reellen Zahlen multiplizieren kann.
Also, erstmal zu den Vektorraeumen [mm] $C^0$ [/mm] und [mm] $C^1$. [/mm] Wenn du eine stetige (stetig diffbare) Funktion $f$ nimmst und sie punktweise mit einer Konstanten [mm] $\lambda$ [/mm] multiplizierst, also die Funktion $g$ mit $g(x) := [mm] \lambda [/mm] f(x)$ betrachtest (diese wird mit [mm] $\lambda [/mm] f$ bezeichnet), dann ist dies ebenfalls eine stetige (stetig diffbare) Funktion. Ebenso ist die punktweise Summe von zwei stetigen (stetig diffbaren) Funktionen wieder stetig (diffbar). Damit sind [mm] $C^0$ [/mm] und [mm] $C^1$ [/mm] mit den punktweisen Verknuepfungen Vektorraeume.
So. Jetzt hast du die Abbildung $f : [mm] C^1 \to C^0$. [/mm] Diese nimmt eine stetig diffbare Funktion $u [mm] \in C^1$ [/mm] und nimmt davon die Ableitung $u'$ -- diese ist nach Voraussetzung stetig. Es ist also $f(u) = u' [mm] \in C^0$, [/mm] oder anders geschrieben, fuer jedes $x [mm] \in \IR$ [/mm] gilt $f(u)(x) = u'(x)$ (zwei Funktionen sind gleich wenn sie an allen Funktionswerten uebereinstimmen).
$f$ ist also der (sogenannte) Ableitungsoperator, der einer Funktion deren Ableitung zuordnet. Du sollst jetzt zeigen, dass er eine lineare Abbildung ist.
Machen wir das mal im Fall der Homogenitaet. Ist $u [mm] \in C^0$ [/mm] und [mm] $\lambda \in \IR$, [/mm] so musst du [mm] $f(\lambda [/mm] u) = [mm] \lambda [/mm] f(u)$ zeigen. Jetzt sind $g := [mm] f(\lambda [/mm] u)$ und $h := [mm] \lambda [/mm] f(u)$ wieder Funktionen (stetige), und fuer ein $x [mm] \in \IR$ [/mm] gilt $g(x) = [mm] (f(\lambda [/mm] u)(x)) = [mm] (\lambda [/mm] u)'(x)$ und $h(x) = [mm] (\lambda [/mm] f(u))(x) = [mm] \lambda [/mm] (f(u))(x) [mm] \lambda [/mm] u'(x)$. Du musst also gerade zeigen, dass [mm] $(\lambda \cdot [/mm] u)'(x) = [mm] \lambda \cdot [/mm] u'(x)$ ist! Aber das ist eine bekannte Ableitungsregel...
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:15 Sa 03.05.2008 | Autor: | miniscout |
Danke, danke, danke!
Ja, das ist eigentlich logisch. Mich hat wohl die Schreibweise etwas verwirrt. Hätte gedacht, dass es dann
$f(u(x))=u'(x)$
heißt und nicht
$(f(u))(x)=u'(x)$
Naja, auf alle Fälle für die Antworten!
Gruß miniscout
|
|
|
|