matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Abbildungenlineare Abbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Abbildungen" - lineare Abbildung
lineare Abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:57 Mi 13.07.2011
Autor: paula_88

Aufgabe
Sei V der reelle Standartvektorraum [mm] \IR^{3} [/mm] und W der reelle Standartvektorraum [mm] \IR^{2}. [/mm]
Existiert eine lineare Abbildung [mm] f:V\toW [/mm] mit der Eigenschaft
f(2,1,0)=(0,-2),
f(2,2,0)=(1,-3) und
f(1,0,-1)=(1,4)?

Hallo an alle,
die Antrwort der Aufgabe ist entweder ja oder nein, man muss nichts exaktes errechnen.
Ich verstehe leider nur noch nicht, wie das gegebene Gleichungssystem aussieht und wie und ob man es lösen könnte.
Kann man im allgemeinen sagen, dass wenn eine Lösung für dieses Gleichungssystem existiert, dass es dann eine lineare Abbildung ist, oder wovon hängt das ab?

Vielen Dank im Voraus, Paula!!!

        
Bezug
lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:07 Mi 13.07.2011
Autor: Schadowmaster

"Eine lineare Abbildung ist eindeutig durch die Bilder der Basis bestimmt."

Hast du den Satz schonmal gesehen/gehört?

Also um die Frage zu beantworten musst du gucken, ob
(2,1,0),(2,2,0),(1,0,-1) eine Basis des [mm] $\IR^3$ [/mm] ist.
Wenn ja bist du fertig, wenn nein musst du gucken ob es einen Widerspruch gibt (überleg dir mal wie du mit den Eigenschaften einer linearen Abbildung einen Widerspruch basteln kannst, falls die drei obigen Vektoren linear abhängig wären...).

Also du musst kein großes LGS lösen; außer vielleicht eins für die Frage ob du eine Basis hast.


Bezug
                
Bezug
lineare Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:23 Do 14.07.2011
Autor: paula_88


> Also um die Frage zu beantworten musst du gucken, ob
>  (2,1,0),(2,2,0),(1,0,-1) eine Basis des [mm]\IR^3[/mm] ist.

Reicht es dann nicht wenn ich prüfe ob die 3 Vektoren linear unabhängig sind?
Sind nicht 3 linear Unabhängige Vektoren immer eine Basis des [mm] \IR^3? [/mm] :-)

Dann sähe meine Antwort wie folgt aus:

[mm] \pmat{ 2 & 2 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & -1 }\sim\pmat{ 2 & 2 & 1 \\ 0 & 1 & -0,5 \\ 0 & 0 & -1 } [/mm]
Somit sind die 3 Vektoren linear unabhängig und Basen des [mm] \IR^3, [/mm] womit die lineare Abbildung f existiert!???

Ich bitte um Stellungnahme :-)

Viele Grüße, Paula

Bezug
                        
Bezug
lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:27 Do 14.07.2011
Autor: blascowitz

Hallo.

das sieht gut aus. Damit existiert eine solche Lineare Abbildung

Viele Grüße
Blasco



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]