matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Matrizenlineare Abbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - lineare Abbildung
lineare Abbildung < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:52 Di 17.01.2012
Autor: goerimx

Aufgabe
Es sei φ : R3 → R4 eine lineare Abbildung mit

φ (1,0,0) = (0,0,0,0)
φ (1,1,0) = (2,0,-1,1)
φ (1,1,1) = (3,1,2,0)


(i) Ist φ eindeutig bestimmt?
(ii) Wenn φ eindeutig bestimmt ist, finden Sie die Matrix A, so dass φ(x) = Ax für alle
x ∈ R3.

zu i)

die matrix phi bildet einen dreidimensionalen Vektor in einen 4 dim ab.
mein problem ist es die dafür benötigte r4 Matrix zu bekommen die ich brauche damit ich einen r4 Vektor als Ergebnis bekomme.
wie komme ich an die Matrix die ich im Anschluss auf ihre invertierbarkeit prüfen muss?!

viel danke für eure Hilfe!

        
Bezug
lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:37 Di 17.01.2012
Autor: angela.h.b.


> Es sei φ : R3 → R4 eine lineare Abbildung mit
>  
> φ (1,0,0) = (0,0,0,0)
>  φ (1,1,0) = (2,0,-1,1)
>  φ (1,1,1) = (3,1,2,0)
>  
>
> (i) Ist φ eindeutig bestimmt?
>  (ii) Wenn φ eindeutig bestimmt ist, finden Sie die Matrix
> A, so dass φ(x) = Ax für alle
>  x ∈ R3.

>  zu i)
>  
> die matrix phi bildet einen dreidimensionalen Vektor in
> einen 4 dim ab.

Hallo,

ist Dir denn kalr, warum die Abildung eindeutig bestimmt ist durch die Dir vorliegenden Angaben?

>  mein problem ist es die dafür benötigte r4 Matrix zu
> bekommen die ich brauche damit ich einen r4 Vektor als
> Ergebnis bekomme.

Ich weiß nicht, was Du mit "r4 Matrix" meinst.
Diematrix einer Abbildung aus dem [mm] \IR^n [/mm] in den [mm] \IR^m [/mm] ist eine [mm] \m\times [/mm] n-Matrix.

>  wie komme ich an die Matrix

In den Spalten der gesuchten Matrix stehen die Bilder der Standardbasisvektoren.
Schreibe dazu die Standardbasisvektoren als Linearkombination von [mm] \vektor{1\\0\\0}, \vektor{1\\1\\0}, \vektor{1\\1\\1}, [/mm]
und nutze dann die Linearitätder Abbildung.

LG Angela



> die ich im Anschluss auf ihre
> invertierbarkeit prüfen muss?!


>  
> viel danke für eure Hilfe!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]