lineare Abbildung nachweisen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Für [mm] n\in\mathbb{N} [/mm] bezeichne [mm] \mathbb{R}[x]_{\leq n} [/mm] den Untervektorraum der Polynome vom Grad [mm] \leq n [/mm] des [mm] \mathbb{R}[/mm]-Vektorraums Abb([mm]\mathbb{R},\mathbb{R}[/mm]), d.h. [mm] \mathbb{R}[x]_{\leq n}[/mm] ist die Menge der Funktionen [mm] f:\mathbb{R}\rightarrow\mathbb{R}[/mm], für die es reelle Zahlen [mm] a_{0},a_{1},...,a_{n} [/mm] gibt, so dass [mm] f(x)=a_{n}x^{n}+...+a_{1}x+a_{0}\,\,\,\forall x\in\mathbb{R} [/mm]
(a) Zeige, dass die Abbildung
[mm] D:\mathbb{R}[x]_{\leq n}\rightarrow\mathbb{R}[x]_{\leq n},f(x)=a_{n}x^{n}+...+a_{1}x+a_{0}\mapsto f'(x)=na_{n}x^{n-1}+...+2a_{2}x+a_{1} [/mm] linear ist.
(b) Bestimme Kern(D) und gebe eine Basis von Kern(D) an.
(c) Bestimme Bild(D) und gebe eine Basis von Bild(D) an. |
Hallo,
ich brauche besonders Hilfe bei (a). Die vielen informationen in der Aufgabenstellung verwirren mich bisher etwas, so dass ich noch keinen Ansatz zu stande gebracht habe. Kann mir jemand vllt. einen Tipp geben?
Die Frage wurde in keinem anderen Forum gestellt.
|
|
|
|
> Für [mm]n\in\mathbb{N}[/mm] bezeichne [mm]\mathbb{R}[x]_{\leq n}[/mm] den
> Untervektorraum der Polynome vom Grad [mm]\leq n[/mm] des
> [mm]\mathbb{R}[/mm]-Vektorraums Abb([mm]\mathbb{R},\mathbb{R}[/mm]), d.h.
> [mm]\mathbb{R}[x]_{\leq n}[/mm] ist die Menge der Funktionen
> [mm]f:\mathbb{R}\rightarrow\mathbb{R}[/mm], für die es reelle Zahlen
> [mm]a_{0},a_{1},...,a_{n}[/mm] gibt, so dass
> [mm]f(x)=a_{n}x^{n}+...+a_{1}x+a_{0}\,\,\,\forall x\in\mathbb{R}[/mm]
>
> (a) Zeige, dass die Abbildung
>
> [mm]D:\mathbb{R}[x]_{\leq n}\rightarrow\mathbb{R}[x]_{\leq n},f(x)=a_{n}x^{n}+...+a_{1}x+a_{0}\mapsto f'(x)=na_{n}x^{n-1}+...+2a_{2}x+a_{1}[/mm]
> linear ist.
Hallo,
die Abbildung D bildet Polynome vom Höchstgrad n wieder auf Polynome vom Höchstgrad n ab.
Wie macht sie das?
Sie ordnet jedem Polynom seine Ableitung zu.
Was mußt Du denn zeigen, wenn Du zeigen willst, daß eine Abbildung [mm] g:V\to [/mm] W linear ist?
Und wenn Du dies nun auf Deine Funktion D überträgst?
Gruß v. Angela
|
|
|
|
|
Ja also Eine Abbildung [mm] g:V\rightarrow W[/mm] heißt ja linear, wenn gilt:
1. [mm] g(x+y)=g(x)+g(y) \,\,\,\forall x,y\in V[/mm]
2. [mm] g(\lambda x)=\lambda g(x) \,\,\,\forall x\in V,\lambda \in K[/mm]
das war mit bereits klar. Mir fällt es nur ein bisschen schwer, dass auf die Aufgabe zu übertragen.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:26 Mi 26.11.2008 | Autor: | leduart |
Hallo
nimm einfach 2 polynome p mit [mm] a_i [/mm] und q mit [mm] b_i [/mm] und schreib es auf. Das meiste ist reine Schreibarbeit.
(wie man ne Summe ableitet weisst du ja)
Gruss leduart
|
|
|
|