matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und Vektorräumelineare Abhängigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Moduln und Vektorräume" - lineare Abhängigkeit
lineare Abhängigkeit < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Abhängigkeit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:14 Mo 19.11.2007
Autor: Smex

Aufgabe
Sei K ein Körper und V ein K-Vektorraum. Beweise die folgenden Aussagen:
(a) Seien u,v [mm] \in [/mm] V\ [mm] \{0\}. [/mm] Dann ist die Teilmenge [mm] \{u, u-v, u+v\}\subset [/mm] V linear abhängig, wenn Char(K) [mm] \not= [/mm] 2 (also wenn 1+1 [mm] \not= [/mm] 0 in K).

(b) Es sei [mm] \{u_1,...,u_n\} [/mm] ein linear unabhängiges System von Vektoren in V. Für [mm] u=\summe_{i=1}^{n} a_iu_i \in [/mm] V   ist das System [mm] \{u_1-u, u_2-u,...,u_n-u\} [/mm] genau dann linear abhängig, wenn [mm] \summe_{i=1}^{n} a_i [/mm] = 1.

Ich habe leider keine Ahnung, wie da drangehen soll. Bei (a) hab ich zunächst versucht, die Vektoren als Linearkombination zu schreiben und dann in einem LGS zu überprüfen, ob die linear abhängig sind, das führte aber zu nichts. Ich wäre sehr dankbar, wenn mir jemand einen Ansatz oder sowas liefern könnte.

Vielen Dank

Smex

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
lineare Abhängigkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:28 Di 20.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]