matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und Vektorräumelineare Abhängigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Moduln und Vektorräume" - lineare Abhängigkeit
lineare Abhängigkeit < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Abhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:24 So 24.10.2010
Autor: kushkush

Aufgabe
Bei Teilmengen soll nachgewiesen werden, ob diese in den angegebenen Vektorräumen unabhängig sind oder nicht.


Hi,

Wenn die Teilmengen zum Beispiel 3 Vektoren sind in [mm] $\IR^{3}$, [/mm] dann kann ich ja ein Gleichungssystem aufstellen und alle Gleichungen müssen 0 ergeben. Wenn die einzige Lösung für die Koeffizienten 0 ist dann sind die Vektoren linear unabhängig.

Kann man das analog übernehmen wenn die Teilmengen Polynome oder komplexe Zahlen sind?

also dann zBsp. $a(3i+2)+b(2i+1)=0$

bzw. [mm] $a(x^2+x+1)+b(x-1)=0 [/mm] $



Ich habe diese Frage in keinem anderen Forum gestellt und bin für jede Antwort dankbar.

        
Bezug
lineare Abhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 23:42 So 24.10.2010
Autor: Sax

Hi,

ja, das kann man genau so machen, weil {1 , i} sine Basis von [mm] \IC [/mm] über [mm] \IR [/mm] ist, bzw. weil {1, x, [mm] x^2, x^3, [/mm] ..} eine Basis des Polynomraumes ist.

Also :  Klammern auflösen, nach Basisvektoren sortieren,ergibt [mm] (..)*e_1 [/mm] + [mm] (..)*e_2 [/mm] + [mm] (..)*e_3 [/mm] ...  =  0, alle Klammern müssen 0 ergeben und dann sehen ob deine Koeffizienten a, b, ..  notwendigerweise alle 0 sein müssen (lin. unabh) oder ob es noch eine andere Möglichkeit gibt (lin. abh.).

Gruß Sax.

Bezug
                
Bezug
lineare Abhängigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:43 So 24.10.2010
Autor: kushkush

Ok, Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]