matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebralineare Algebra bijektivität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - lineare Algebra bijektivität
lineare Algebra bijektivität < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Algebra bijektivität: bijektiv
Status: (Frage) beantwortet Status 
Datum: 22:18 Mi 16.11.2005
Autor: Gerd52

Hallo Forumsfreunde,
ich habe eine kleine Frage.
a)Eine Funktion  f: A -> A mit  |A| <  [mm] \infty [/mm]  habe die Eigenschaft, dass
f(f(x))  =  x für alle  x  [mm] \in [/mm]  A
Muss denn f zwangsläufig bijektiv sein?
Ich bräuchte eine kleine Erklärung mit einem Beispiel zum Verständnis.

vielen Dank!

grüße
Gerd

        
Bezug
lineare Algebra bijektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 22:31 Mi 16.11.2005
Autor: Hanno

Hallo Gerd!

Für Abbildungen auf einer endlichen Menge sind die Begriffe Injektivität, Surjektivität und Bijektivität äquivalent. Es reicht also eine dieser Eigenschaften nachzuweisen oder zu widerlegen.

Nimm doch einfach mal an, es gäbe [mm] $x,y\in [/mm] A$ mit $f(x)=f(y)$. Willst du zeigen, dass $f$ injektiv ist, musst du daraus $x=y$ ableiten. Wie könnte das unter Einbeziehung der Voraussetzung gehen?

Alternativ kannst du auch gleich die Surjektivität nachweisen: nimm dir ein [mm] $x\in [/mm] A$. Gibt es dann notwendiger weise ein [mm] $y\in [/mm] A$ mit $f(y)=x$? Schaue dir auch dazu lediglich die Voraussetzung an.


Liebe Grüße,
Hanno

Bezug
                
Bezug
lineare Algebra bijektivität: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:53 Mi 16.11.2005
Autor: Gerd52

vielen Dank!

viele grüße
Gerd

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]