matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungenlineare Dgl lösen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - lineare Dgl lösen
lineare Dgl lösen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Dgl lösen: Variation der Konstanten
Status: (Frage) beantwortet Status 
Datum: 17:37 Mi 14.11.2012
Autor: Studiiiii

Hallöchen,

ich sitze gerade an einer Aufgabe mit einer Bernoulli-Dgl.

Ich habe diese nun bereits linear gemacht.

In meinem Skript steht nun, man macht einen Ansatz für die variation der konstanten, aber ich versteh nur bahnhof.

die allgemeine lösung konnte ich ablesen, es geht mir jetzt nur noch um die spezielle lösung der dgl.

vllt. kann mir jemand das anhand des beispiels aus der vorlesung erklären:
y' = x+y, wobei der ansatz der speziellen lösung ys(x) = bx+a.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
lineare Dgl lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 Mi 14.11.2012
Autor: MathePower

Hallo Studiiiii,


> Hallöchen,
>  
> ich sitze gerade an einer Aufgabe mit einer Bernoulli-Dgl.
>  
> Ich habe diese nun bereits linear gemacht.
>  
> In meinem Skript steht nun, man macht einen Ansatz für die
> variation der konstanten, aber ich versteh nur bahnhof.
>  
> die allgemeine lösung konnte ich ablesen, es geht mir
> jetzt nur noch um die spezielle lösung der dgl.
>  
> vllt. kann mir jemand das anhand des beispiels aus der
> vorlesung erklären:
>  y' = x+y, wobei der ansatz der speziellen lösung ys(x) =
> bx+a.
>  


Diesen Ansatz kann man auch machen.

Nun zu der Variation der Konstanten.

Die Lösung dieser homogenen DGL ist [mm]y_{h}\left(x}\right)=C*e^{x}[/mm]

Die Variation der Konstanten besagt nun,
daß die Konstanten zusätlich von x abhängig gemacht werden.

Damit lautet der Ansatz für die partikuläre Lösung

[mm]y_{s}\left(x\right)=C\left(x\right)*e^{x}[/mm]

Dieser Ansatz wird nun in die DGL [mm]y'=x+y[/mm] eingesetzt


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
                
Bezug
lineare Dgl lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:54 Mi 14.11.2012
Autor: Studiiiii

und das war's dann schon ?

klingt einleuchtend.

denke das hilft mir weiter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]