matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebralineare Funktionale
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - lineare Funktionale
lineare Funktionale < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Funktionale: Beweisidee
Status: (Frage) beantwortet Status 
Datum: 19:35 So 14.05.2006
Autor: lisa80

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Hallo zusammen!

Ich bin jetzt schon öfter auf folgenden Satz gestoßen und weiß nicht, wie man das beweisen soll..

X sei ein linearer Raum und [mm] g,f_1,...f_n [/mm] seien lineare Funktional auf X mit [mm] \cap \ker f_i \subseteq \ker [/mm] g. Dann gilt: [mm] g=\sum \alpha_i f_i [/mm] mit [mm] \alpha_i\in\mathbb{K}. [/mm]

Kann mir da vielleicht jemand helfen?

Vielen lieben Dank,
Lisa

        
Bezug
lineare Funktionale: Tipp
Status: (Antwort) fertig Status 
Datum: 20:51 So 14.05.2006
Autor: topotyp

Ich kenne den Satz zwar auch nicht, aber mir fällt was ein...
Vermutlich muss n=dim(X) sein!!! Schau mal ob du ihn
für n=1 zeigen kannst. Das sollte elementar sein, weil
ein lineares Funktional entweder surjectiv oder null ist
und weil als Unterräume eines 1-dim. Raumes nur er
selbst und der triviale Raum auftreten. Ja und der schwierige
Teil kann vielleicht mit Induktion $n-> n+1$ gemacht werden,
vielleicht wieder surjektivität von [mm] $g,f_1,...$ [/mm] benutzen falls sie [mm] $\neq [/mm] 0$
sind und vielleicht kern/rang - formeln bzw. vektorraum aufsplitten...
vielleicht geht das ja irgendwie so... gruss topotyp

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]