matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und Vektorräumelineare Unabhängigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Moduln und Vektorräume" - lineare Unabhängigkeit
lineare Unabhängigkeit < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:45 Sa 17.11.2007
Autor: Smex

Aufgabe
Gegeben sei die folgende Menge von Spaltenvektoren:
M=⎨(1,0,0); (0,1,0); (1,0,1)(0,1,1)⎬
Man fasse M als Untermenge von [mm] Q^3 [/mm] auf, ist die Menge M linear abhängig?

Also mir ist klar, dass ich zur Überprüfung ein LGS bilden muss. Mir ist nur nicht klar, wie ich den 3. Vektor im LGS darstellen soll, weil der ja im Prinzip ein Skalarprodukt ist.
Kann mir da vielleicht jemand einen Tipp geben?

Vielen Dank

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
lineare Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:39 Sa 17.11.2007
Autor: angela.h.b.


> Gegeben sei die folgende Menge von Spaltenvektoren:
>  M=⎨(1,0,0); (0,1,0); (1,0,1)(0,1,1)⎬
>  Man fasse M als Untermenge von [mm]Q^3[/mm] auf, ist die Menge M
> linear abhängig?
>  Also mir ist klar, dass ich zur Überprüfung ein LGS bilden
> muss. Mir ist nur nicht klar, wie ich den 3. Vektor im LGS
> darstellen soll, weil der ja im Prinzip ein Skalarprodukt
> ist.

Hallo,

[willkommenmr].

Ein Skalarprodukt wäre ja völlig unsinnig, das wäre dann ja kein Vektor mehr.

Meinst Du nicht, daß das ein Dreuckfehler ist, und Du in Wahrheit die Abhängigkeit der vier Vektoren untersuchen sollst?
Ich denke, daß das so gemeint ist.

Gruß v. Angela

Bezug
                
Bezug
lineare Unabhängigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Sa 17.11.2007
Autor: Smex

Nee, denn bei der aufgabe sind eigentlich 4 Mengen gegeben, mit den anderen kam ich ohne Probleme klar, nur bei dieser war das so komisch gestellt. Und es kann ja nicht die Abhängigkeit der 4 Vektoren sein, denn die Mengen sollen ja Teilkörper von [mm] Q^3 [/mm] sein. Außerdem ist kein Trennzeichen (Komma) zwischen den Vektoren. Komischerweise aber auch kein anderes Rechenzeichen, daher war ich davon ausgegangen, dass das ein Skalarprodukt sein soll.
Trotzdem vielen Dank, ich denke ich lass die Aufgabe einfach weg^^
(Vielleicht ist es ja doch ein Fehler)



Bezug
                        
Bezug
lineare Unabhängigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:59 Sa 17.11.2007
Autor: angela.h.b.


> Nee, denn bei der aufgabe sind eigentlich 4 Mengen gegeben,
> mit den anderen kam ich ohne Probleme klar, nur bei dieser
> war das so komisch gestellt. Und es kann ja nicht die
> Abhängigkeit der 4 Vektoren sein, denn die Mengen sollen ja
> Teilkörper von [mm]Q^3[/mm] sein.

???

Wieso soll man im [mm] \IQ^3 [/mm] nicht nach der Abhängigkeit v. 4 Vektoren fragen können?

Ich kann mich doch auch im [mm] \IR^2 [/mm] für die Abhängigkeit v. 437 Vektoren interessieren.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]