matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle Differentialgleichungenlineare partielle Gleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Partielle Differentialgleichungen" - lineare partielle Gleichung
lineare partielle Gleichung < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare partielle Gleichung: Charakteristiken
Status: (Frage) beantwortet Status 
Datum: 16:51 Di 02.11.2010
Autor: snarzhar

Aufgabe
Bestimmen Sie explizit die L¨osung des Cauchy–Problems f¨ur die Advektionsgleichung
 ut + aux = f in R × R+,
u = g auf R × {t = 0},
wobei a ∈ R konstant sei. Hinweis: Betrachten Sie u l¨angs charakteristischer
Kurven.

nun, ich habe die Aufgabe nach dem Script vom Hr. Schüler (http://www.math.uni-leipzig.de/~schueler/pde/pde.pdf) zu lösen, wo ab der 7ten Seite erklärt wird, wie man (quasi-)lineare Gleichungen erster Ordnung mit Hilfe von charakteristischen Kurven löst, und nun weiss ich nicht, ob ich alles richtig gelöst habe.

als erstes habe ich t und x umgetauft in x und y, damit ich der im Script ähnliche Notation habe. somit habe ich

ux + auy = f in R × R+,
u = g auf R × {x = 0},

nun als erstes bestimme ich x'(t), y'(t) und u'(t) und bekomme
x'(t) = 1, y'(t) = a, u'(t) = f
weiter bestimme ich
x(0,s) = 0, y(0,s) = s, u(0,s) = g

Das intergrieren von oben bestimmten Ableitungen ergibt
x(t,s) = t + f1(s), y(t,s) = at + f2(s), u(t,s) = [mm] \integral{f(t) dt} [/mm] + f3(s)

mit den Anfagswerten zusammen ergibt sich :
x(t,s) = t, y(t,s) = at + s
und u(t,s) = [mm] \integral{f dt} [/mm] + g   (? bin mir nicht sicher, ob man das so machen darf.)

nun ersetzen wir t durch x(weil x = t) und bekommen, y = ax + s
=> s = y - ax

=> u(x,y) = [mm] \integral{f dx} [/mm] + g

ist es richtig?! Komme auf keine gute Sachen wenn ich die Lösung in die Gleichung einsetze.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
lineare partielle Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:13 Di 02.11.2010
Autor: snarzhar

kann ich  irgendwie überprüfen ob die Lösung richtig ist? mit dem einfachen Ableiten von f ung ist es bisschen schwierig, da die Funktionen nicht explizit beschrieben sind...

Bezug
        
Bezug
lineare partielle Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:51 Di 02.11.2010
Autor: MathePower

Hallo snarzhar,

> Bestimmen Sie explizit die L¨osung des Cauchy–Problems
> f¨ur die Advektionsgleichung
>   ut + aux = f in R × R+,
>  u = g auf R × {t = 0},
>  wobei a ∈ R konstant sei. Hinweis: Betrachten Sie u
> l¨angs charakteristischer
>  Kurven.
>  nun, ich habe die Aufgabe nach dem Script vom Hr. Schüler
> (http://www.math.uni-leipzig.de/~schueler/pde/pde.pdf) zu
> lösen, wo ab der 7ten Seite erklärt wird, wie man
> (quasi-)lineare Gleichungen erster Ordnung mit Hilfe von
> charakteristischen Kurven löst, und nun weiss ich nicht,
> ob ich alles richtig gelöst habe.
>  
> als erstes habe ich t und x umgetauft in x und y, damit ich
> der im Script ähnliche Notation habe. somit habe ich
>  
> ux + auy = f in R × R+,
>  u = g auf R × {x = 0},
>  
> nun als erstes bestimme ich x'(t), y'(t) und u'(t) und
> bekomme
>  x'(t) = 1, y'(t) = a, u'(t) = f
>  weiter bestimme ich
> x(0,s) = 0, y(0,s) = s, u(0,s) = g
>  
> Das intergrieren von oben bestimmten Ableitungen ergibt
>  x(t,s) = t + f1(s), y(t,s) = at + f2(s), u(t,s) =
> [mm]\integral{f(t) dt}[/mm] + f3(s)
>  
> mit den Anfagswerten zusammen ergibt sich :
>  x(t,s) = t, y(t,s) = at + s
>  und u(t,s) = [mm]\integral{f dt}[/mm] + g   (? bin mir nicht
> sicher, ob man das so machen darf.)


Wir haben die Gleichung

[mm]u_{t}\left(t,s\right)=f\left(t,s\right)[/mm]

Nun kannst auf beiden Seiten zwischen 0 und t integrieren:

[mm]\integral_{0}^{t}{u_{t}\left(t,s\right) \ dt}=\integral_{0}^{t}{f\left(t,s\right) \ dt}[/mm]

Das liefert dann:

[mm]}u\left(t,s\right) - u\left(0,s\right)=\integral_{0}^{t}{f\left(t,s\right) \ dt}[/mm]

Demnach:

[mm]}u\left(t,s\right) =u\left(0,s\right)+\integral_{0}^{t}{f\left(t,s\right) \ dt}[/mm]



>  
> nun ersetzen wir t durch x(weil x = t) und bekommen, y = ax
> + s
> => s = y - ax
>  
> => u(x,y) = [mm]\integral{f dx}[/mm] + g
>  
> ist es richtig?! Komme auf keine gute Sachen wenn ich die
> Lösung in die Gleichung einsetze.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt


Gruss
MathePower

Bezug
                
Bezug
lineare partielle Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:30 Di 02.11.2010
Autor: snarzhar

Also war meine Antwort am Ende richtig?


Wenn ja, würde ich gern gleich eine weitere Aufgabe mitreinstellen, da sie sich direkt auf die erste Bezieht :

L¨osen Sie das Cauchy–Problem f¨ur die Wellengleichung
 utt − cuxx = 0 in R × R+,
u = g, ut = h auf R × {t = 0}
unter Benutzung von Aufgabe 1 explizit.

hier verstehe ich nicht ganz, was von mir gewollt wird bzgl der 1ten Aufgabe((

Bezug
                        
Bezug
lineare partielle Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:14 Mi 03.11.2010
Autor: MathePower

Hallo snarzhar,

> Also war meine Antwort am Ende richtig?


Ich habe nochmal über die Lösungen der PDE nachgedacht.

Es gilt:

[mm]u\left(t,s\right)=\integral_{}^{}{f\left(t,s\right) \ dt}+f3\left(s\right)[/mm]

Eine Konstante ist s.

Obiges umgeformt nach [mm]f3\left(s\right)[/mm] ergibt:

[mm]f3\left(s\right)=u\left(t,s\right)-\integral_{}^{}{f\left(t,s\right) \ dt}[/mm]

Somit sind allgemeine Lösungen der PDE, diejenigen,
die der Gleichung

[mm]w\left(s,u\left(t,s\right)-\integral_{}^{}{f\left(t,s\right) \ dt\right)=0[/mm]

genügen, wobei w eine stetige Funktion ist.


>  
>
> Wenn ja, würde ich gern gleich eine weitere Aufgabe
> mitreinstellen, da sie sich direkt auf die erste Bezieht :
>  
> L¨osen Sie das Cauchy–Problem f¨ur die Wellengleichung
>   utt − cuxx = 0 in R × R+,
>  u = g, ut = h auf R × {t = 0}
>  unter Benutzung von Aufgabe 1 explizit.
>  
> hier verstehe ich nicht ganz, was von mir gewollt wird bzgl
> der 1ten Aufgabe((


Ich denk mir mal Du sollst mittels einer Transformation
diese Wellengleichung auf zwei PDE's zurückführen, die
die Gestalt von Aufgabe 1 besitzen.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]