matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und Vektorräumelineare unabhängigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Moduln und Vektorräume" - lineare unabhängigkeit
lineare unabhängigkeit < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:40 Mi 23.04.2008
Autor: deex

Aufgabe
Im Raum C[0,1] der auf [0,1] definierten, reellwertigen und stetigen Funktionen werden die Operationen (f1+f2)(x) = f1(x) + f2(x) und (a*f)(x) = a*f(x) erklärt. Man überprüfe folgende Funktionensysteme auf linieare Unabhängigkeit.

(c) {1,sinx,cosx}

ich weis zwar wie ich vektoren auf lineare unabhängigkeit überprüfe , aber Funktionensysteme? - wie soll man das machen?

bitte um hilfe

        
Bezug
lineare unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 22:04 Mi 23.04.2008
Autor: piet.t

Hallo,


>  ich weis zwar wie ich vektoren auf lineare unabhängigkeit
> überprüfe , aber Funktionensysteme? - wie soll man das
> machen?
>  

Eigentlich auch nicht viel anders:
erst setzt man an, dass
[mm]a\cdot 1 + b\cdot \sin x + c\cdot \cos x = 0[/mm]
Wobei zu beachten ist, dass dies für alle [mm] $x\in [/mm] [0,1]$ mit den gleich a,b und c gelten muss.
Als nächstes kann man 3 x-Wete aus [0,1] wählen. Mit diesen bekommt man dann 3 Gleichungen für a, b und c. Haben diese als einzige Lösung a=b=c=0, dann sind die Funktionen linear abhängig.
Gibt es für die gewählten Punkte noch mehr Lösungen, dann könnten die Funktionen linear unabhägig sein, allerdings muss man nachweisen, dass es auch nicht-triviale Lösungen gibt, die nicht nur für die drei Beispielwerte, sondern auch für alle anderen x-Werte in [0,1] die Gleichung erfüllen.

Versuch es einfach mal, in deinem Beispiel ist das wirklich nicht allzu schwer...

Gruß

piet

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]