matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNumerik linearer Gleichungssystemelineares Gleichungssystem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Numerik linearer Gleichungssysteme" - lineares Gleichungssystem
lineares Gleichungssystem < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineares Gleichungssystem: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:42 Di 15.11.2005
Autor: squeezer

Hallo
ich hab folgende Frage zu benatworten:
Gegenen sei ein lineares Gleichungsystem $Ax=b$, $a  [mm] \in \IR^{n \times{}n}$, [/mm] $b [mm] \in \IR^{n}$. [/mm] Es sei vorausgesetzt:
$rang(A|b) = rang(A) = m < n$,.
(Soweit ich verstehe muss dann also die Lösungsmenge des homogenen Gleichungsystem einen (n-m)-dimensionalen Vektorraum bilden.

Frage: Wie kann man den Gauss-Algorithmus in Form von n-m Basisvektoren des Lösungsraumes des homohenen Gleichungsystems Ax=0 und einem Lösungsvektor des inhomogenen Gleichungssystems Ax=b berechnen? Der Algorithmus soll in Pseudocode angegeben werden, evtl auch als Flussdiagramm.

Die Darstellung in Pseudocode oder als Flussdiagramm dürfte nicht das Problem sein, allerdings weiss ich nicht mal wie man das ganze angehen soll, und verstehe nicht was und wie man das wirklich machen soll.

Vielen dank für ihre Hilfe :)

        
Bezug
lineares Gleichungssystem: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:49 Do 17.11.2005
Autor: Loddar

Hallo squeezer!


Leider konnte Dir keiner hier mit Deinem Problem in der von Dir vorgegebenen Zeit weiterhelfen.

Vielleicht hast Du ja beim nächsten Mal mehr Glück [kleeblatt] .


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]