matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Gleichungssystemelösbarkeit von LGS
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Gleichungssysteme" - lösbarkeit von LGS
lösbarkeit von LGS < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lösbarkeit von LGS: LGS lösbarkeit
Status: (Frage) beantwortet Status 
Datum: 18:25 Mo 03.02.2014
Autor: michachen91

Aufgabe
Für jedes a, b 'Element' R ist ein Geichungssystem gegeben:

x + 2y + 3z = 21
3x + 9y - 2z = -10
x + y - (a+2)y = b-6

a) Für welche a, b 'Element' R ist das Gleichungssystem unlösbar?
b) Für welche a, b 'Element' R besitzt das Gleichungssystem genau eine Lösung?
c) Für welche a, b 'Element' R hat das Gleichungssystem unendlich viele Lösungen? Wie heißen diese Lösungen?
d) Wie groß ist der Rang der 3x3-Matrix A = [mm] \begin{pmatrix} 1 & 2 & 3 \\ 3 & 9 & -2 \\ 1 & 1 & -2 \end{pmatrix} [/mm] ?

e) Berechnen Sie die Determinante der Matrix A aus Aufgabenteil d.
f) Berechnen Sie die Deeterminante der inversen Matrix von A (falls existent), also [mm] det(A^{-1}) [/mm]

Wie kann ich bei den ersten drei Teilaufgaben ( a) bis c) ) vorgehen? Ich habe leider keine Idee. Ich hatte schon eine, das gegebene Gleichungssystem in Treppenform aufzustellen. Sprich zweite Zeile, erste Spalte Null. und 3 Zeile, Spalte 1 und 2 = Null. Aber da bin ich nicht wirklich weiter gekommen.

Die letzten drei Teilaufgaben d) bis f) habe ich soweit hinbekommen.

Wäre echt dankbar über eure Hilfe!!





Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
lösbarkeit von LGS: Antwort
Status: (Antwort) fertig Status 
Datum: 18:28 Mo 03.02.2014
Autor: fred97


> Für jedes a, b 'Element' R ist ein Geichungssystem
> gegeben:
>  
> x + 2y + 3z = 21
>  3x + 9y - 2z = -10
>  x + y - (a+2)y = b-6
>  
> a) Für welche a, b 'Element' R ist das Gleichungssystem
> unlösbar?
>  b) Für welche a, b 'Element' R besitzt das
> Gleichungssystem genau eine Lösung?
>  c) Für welche a, b 'Element' R hat das Gleichungssystem
> unendlich viele Lösungen? Wie heißen diese Lösungen?
>  d) Wie groß ist der Rang der 3x3-Matrix A =
> [mm]\begin{pmatrix} 1 & 2 & 3 \\ 3 & 9 & -2 \\ 1 & 1 & -2 \end{pmatrix}[/mm] ?
>  
> e) Berechnen Sie die Determinante der Matrix A aus
> Aufgabenteil d.
>  f) Berechnen Sie die Deeterminante der inversen Matrix von
> A (falls existent), also [mm]det(A^{-1})[/mm]
>  Wie kann ich bei den ersten drei Teilaufgaben ( a) bis c)
> ) vorgehen? Ich habe leider keine Idee. Ich hatte schon
> eine, das gegebene Gleichungssystem in Treppenform
> aufzustellen. Sprich zweite Zeile, erste Spalte Null. und 3
> Zeile, Spalte 1 und 2 = Null. Aber da bin ich nicht
> wirklich weiter gekommen.


Wenn Du es richtig machst, kommst Du damit durchaus weiter.

Also: zeig Deine Rechnungen !

FRED

>  
> Die letzten drei Teilaufgaben d) bis f) habe ich soweit
> hinbekommen.
>  
> Wäre echt dankbar über eure Hilfe!!
>  
>
>
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]