matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-Funktionenlösung von log. Gleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Exp- und Log-Funktionen" - lösung von log. Gleichung
lösung von log. Gleichung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lösung von log. Gleichung: Aufgabe1
Status: (Frage) beantwortet Status 
Datum: 11:16 Sa 02.12.2006
Autor: Idale

Aufgabe
[mm] log_3 (\wurzel{x+2} [/mm] - x - 1) = 1

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hi all,

also ich hab folgende Aufgabe u. soll diese natürlich auch lösen, d.h. nach x umstellen.

Ich bin mir ziemlich unsicher, was meinen Rechenweg angeht, wäre also nett, wenn sich jemand den mal anschaut:

Eigentlich ist es schon der erste Schritt, wobei ich mir nicht sicher bin, ob man den wirklich machen darf:

Nämlich um das log wegzubekommen, hab ich einfach, da die Basis 3 ist, quasi hoch drei gerechnet.

Dann hätte ich nun [mm] \wurzel{x+2} [/mm] - x - 1 = 1

Nun stellt sich die Frage darf ich soetwas machen? Wenn ja wäre es ja recht simple solche Aufgaben zu lösen...

Danke & ein schönes Wochenende wünsch ich


        
Bezug
lösung von log. Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:41 Sa 02.12.2006
Autor: celeste16

guck mal in dein tafelwerk: da steht (zumindest bei mir)

[mm] log_{a}b=c \gdw a^{c}=b [/mm]

setz deine Gleichung ein und versuchs nochmal.



Bezug
        
Bezug
lösung von log. Gleichung: beide Seiten
Status: (Antwort) fertig Status 
Datum: 12:06 Sa 02.12.2006
Autor: Loddar

Hallo Idale!


Deine Idee mit dem "hoch 3 nehmen" ist schon sehr gut. Allerdings musst Du das auch mit beiden Seiten der Gleichung machen; sprich: auch rechts.

Damit wird nämlich:  [mm] $\wurzel{x+2} [/mm] - x - 1 \ = \ [mm] \red{3}^1 [/mm] \ = \ 3$


Gruß
Loddar


Bezug
                
Bezug
lösung von log. Gleichung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:55 Sa 02.12.2006
Autor: Idale

Aber das hab ich doch gemacht...blo0 wäre es dann doch [mm] 3^{0}, [/mm] oder etwa nicht?

Danke

Bezug
                        
Bezug
lösung von log. Gleichung: Aufgabenstellung?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:04 Sa 02.12.2006
Autor: Loddar

Hallo Idale!


Aber in Deiner Aufgabenstellung steht doch auf der rechten Seite bereits eine $1_$ . Also muss es dann [mm] $3^1 [/mm] \ = \ 1$ heißen.


Gruß
Loddar


Bezug
        
Bezug
lösung von log. Gleichung: Aufgabe2
Status: (Frage) beantwortet Status 
Datum: 16:44 Sa 02.12.2006
Autor: Idale

Da hast du natürlich recht, wenn man eine 1 hinschreibt, dann sieht man natürlich eine 1 und keine 0, so wie ich es mir gedacht hatte (ja, ja die meisten Fehler passieren beim Abschreiben der Aufgaben:-))

Nun hab ich aber gleiche eine nächste Frage zu dem Thema(sorry):

[mm] log_2(5-x) [/mm] + [mm] log_2(5+x) [/mm] = 4 (dismal richtig abgeschrieben)

1. Schritt: [mm] log_2(x² [/mm] + 25) = 4 | "hoch 2"

2. Schritt: x² + 25 = 16

3. Schritt: x² = - 9

Heißt es jetzt hier für gibt es keine Lösung oder muss ich das jetzt in komplexen Zahlen angeben (+- x = i * [mm] \wurzel{9})? [/mm]

MFG

Bezug
                
Bezug
lösung von log. Gleichung: 3. binomische Formel
Status: (Antwort) fertig Status 
Datum: 16:53 Sa 02.12.2006
Autor: Loddar

Hallo Idale!


Aufgepasst - gemäß 3. binomischer Formel gilt:

[mm] $\log_2(5-x)+\log_2(5+x) [/mm] \ =\ [mm] \log_2[(5-x)*(5+x)] [/mm] \ =\ [mm] \log_2\left(25 \ \red{-} \ x^2\right)$ [/mm]


Der Rest der Rechnung sieht prinzipiell gut aus.


Gruß
Loddar


Bezug
                        
Bezug
lösung von log. Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:58 So 03.12.2006
Autor: Idale

DANKE SCHÖN...bin halt zu blöd solche Schusselfehler von alleine zu sehen...

eine letzte Frage(was zumindest die log-funktionen angeht) hab ich aber noch (das wird mir jetzt so langsam peinlich, aber egal:-)

Nämlich zu [mm] log_2(4^x [/mm] - 6) = x

1. Schritt: [mm] 4^x [/mm] - 6 = [mm] 2^x [/mm]

2. Schritt: [mm] 4^x [/mm] - [mm] 2^x [/mm] = 6

Und jetzt wird es für mich problematisch... ich darf nicht zufälligerweise aus [mm] 4^x [/mm] - [mm] 2^x [/mm] - [mm] 2^x [/mm] machen oder?

Ich hab im Tafelwerk schon nachgeschaut, konnte jedoch nichts finden...

MFG

Bezug
                                
Bezug
lösung von log. Gleichung: Potenzgesetz und Substitution
Status: (Antwort) fertig Status 
Datum: 11:11 So 03.12.2006
Autor: Loddar

Hallo Idale!


Bedenke, dass gilt: [mm] $4^x [/mm] \ = \ [mm] \left( \ 2^2 \ \right)^x [/mm] \ = \ [mm] 2^{2*x} [/mm] \ = \ [mm] \left( \ 2^x \ \right)^2$ [/mm]


Wenn Du nun substituierst (ersetzt) $z \ := \ [mm] 2^x$ [/mm] , erhältst Du folgende quadratsiche Gleichung, die Du z.B. mit der MBp/q-Formel lösen kannst:

[mm] $4^x [/mm] - [mm] 2^x-6 [/mm] \  = \ 0$

[mm] $\gdw$ $z^2-z-6 [/mm] \ = \ 0$


Am Ende nach $x_$ auflösen nicht vergessen.


Gruß
Loddar


Bezug
                                        
Bezug
lösung von log. Gleichung: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:27 So 03.12.2006
Autor: Idale

Vielen Dank...ich muss sagen das Forum ist echt duffte!!!!!!!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]