matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-Funktionenlogarithmusgesetze herleiten
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Exp- und Log-Funktionen" - logarithmusgesetze herleiten
logarithmusgesetze herleiten < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

logarithmusgesetze herleiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:12 Mo 12.10.2009
Autor: MontBlanc

Aufgabe
Leiten Sie von exp(x)*exp(y)=exp(x+y) ausgehend folgende Beziehungen her:

(i) log(u*v)=log(u)+log(v)
(ii) [mm] log(\bruch{1}{u}=-log(u) [/mm]
(iii) [mm] log(\bruch{u}{v})=log(u)-log(v) [/mm]

Hi,

also die Gleichung exp(x)*exp(y)=exp(x+y) konnte ich noch herleiten. Jetzt geht es aber weiter mit den anderen Sachen. Ich muss es irendwie schaffen mit den logarithmen im Exponenten zu rechnen, ich hab aber gerade ein dickes Brett vorm Kopf und weiß nicht mehr wie es ging. Habe das alles irgendwann schonmal machen müssen. Könnte es mir bitte jemand abnehmen ?

Danke schonmal,

exeqter

        
Bezug
logarithmusgesetze herleiten: Antwort
Status: (Antwort) fertig Status 
Datum: 22:32 Mo 12.10.2009
Autor: schachuzipus

Hallo eX...,

> Leiten Sie von exp(x)*exp(y)=exp(x+y) ausgehend folgende
> Beziehungen her:
>  
> (i) log(u*v)=log(u)+log(v)
>  (ii) [mm]log(\bruch{1}{u}=-log(u)[/mm]
>  (iii) [mm]log(\bruch{u}{v})=log(u)-log(v)[/mm]
>  Hi,
>  
> also die Gleichung exp(x)*exp(y)=exp(x+y) konnte ich noch
> herleiten. Jetzt geht es aber weiter mit den anderen
> Sachen. Ich muss es irendwie schaffen mit den logarithmen
> im Exponenten zu rechnen, ich hab aber gerade ein dickes
> Brett vorm Kopf und weiß nicht mehr wie es ging. Habe das
> alles irgendwann schonmal machen müssen. Könnte es mir
> bitte jemand abnehmen ?

Nun, benutze die Definition des Logarithmus und die o.e. Regel für die Exponentialfunktion.

Ich mach mal die erste, die anderen gehen analog:

Mit [mm] $\log$ [/mm] ist wohl der [mm] $\ln$ [/mm] gemeint ...

Also: es ist [mm] $\ln(u)=x\gdw e^x=u$ [/mm] und [mm] $\ln(v)=y\gdw e^y=v$ [/mm] nach Def. Logarithmus

Damit [mm] $u\cdot{}v=e^x\cdot{}e^y=e^{x+y}$ [/mm] nach der Regel oben für die Exponentialfkt.

Nun wieder die Def. Logarithmus anwenden:

[mm] $u\cdot{}v=e^{x+y}\gdw \ln(u\cdot{}v)=x+y$ [/mm]

Aber es ist [mm] $x=\ln(u), y=\ln(v)$ [/mm] (siehe oben), also [mm] $\Rightarrow$ [/mm] Beh.

>  
> Danke schonmal,
>  
> exeqter

Gruß

schachuzipus

Bezug
                
Bezug
logarithmusgesetze herleiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:55 Mo 12.10.2009
Autor: MontBlanc


> Hallo eX...,
>  
> > Leiten Sie von exp(x)*exp(y)=exp(x+y) ausgehend folgende
> > Beziehungen her:
>  >  
> > (i) log(u*v)=log(u)+log(v)
>  >  (ii) [mm]log(\bruch{1}{u}=-log(u)[/mm]
>  >  (iii) [mm]log(\bruch{u}{v})=log(u)-log(v)[/mm]
>  >  Hi,
>  >  
> > also die Gleichung exp(x)*exp(y)=exp(x+y) konnte ich noch
> > herleiten. Jetzt geht es aber weiter mit den anderen
> > Sachen. Ich muss es irendwie schaffen mit den logarithmen
> > im Exponenten zu rechnen, ich hab aber gerade ein dickes
> > Brett vorm Kopf und weiß nicht mehr wie es ging. Habe das
> > alles irgendwann schonmal machen müssen. Könnte es mir
> > bitte jemand abnehmen ?
>  
> Nun, benutze die Definition des Logarithmus und die o.e.
> Regel für die Exponentialfunktion.
>  
> Ich mach mal die erste, die anderen gehen analog:
>  
> Mit [mm]\log[/mm] ist wohl der [mm]\ln[/mm] gemeint ...
>  
> Also: es ist [mm]\ln(u)=x\gdw e^x=u[/mm] und [mm]\ln(v)=y\gdw e^y=v[/mm] nach
> Def. Logarithmus
>  
> Damit [mm]u\cdot{}v=e^x\cdot{}e^y=e^{x+y}[/mm] nach der Regel oben
> für die Exponentialfkt.
>  
> Nun wieder die Def. Logarithmus anwenden:
>  
> [mm]u\cdot{}v=e^{x+y}\gdw \ln(u\cdot{}v)=x+y[/mm]
>  
> Aber es ist [mm]x=\ln(u), y=\ln(v)[/mm] (siehe oben), also
> [mm]\Rightarrow[/mm] Beh.
> >  

> > Danke schonmal,
>  >  
> > exeqter
>
> Gruß
>  
> schachuzipus

Hi,

danke für deine schnelle Antwort. Für das erste hab ich das ganze hinbekommen. Beim zweiten habe ich noch eine Frage:
Muss ich es für den Nachweis umschreiben in [mm] ln(1*u^{-1}) [/mm] ?

lg,

julius

Bezug
                        
Bezug
logarithmusgesetze herleiten: Antwort
Status: (Antwort) fertig Status 
Datum: 23:07 Mo 12.10.2009
Autor: schachuzipus

Hallo Julius,

> > Hallo eX...,
>  >  
> > > Leiten Sie von exp(x)*exp(y)=exp(x+y) ausgehend folgende
> > > Beziehungen her:
>  >  >  
> > > (i) log(u*v)=log(u)+log(v)
>  >  >  (ii) [mm]log(\bruch{1}{u}=-log(u)[/mm]
>  >  >  (iii) [mm]log(\bruch{u}{v})=log(u)-log(v)[/mm]
>  >  >  Hi,
>  >  >  
> > > also die Gleichung exp(x)*exp(y)=exp(x+y) konnte ich noch
> > > herleiten. Jetzt geht es aber weiter mit den anderen
> > > Sachen. Ich muss es irendwie schaffen mit den logarithmen
> > > im Exponenten zu rechnen, ich hab aber gerade ein dickes
> > > Brett vorm Kopf und weiß nicht mehr wie es ging. Habe das
> > > alles irgendwann schonmal machen müssen. Könnte es mir
> > > bitte jemand abnehmen ?
>  >  
> > Nun, benutze die Definition des Logarithmus und die o.e.
> > Regel für die Exponentialfunktion.
>  >  
> > Ich mach mal die erste, die anderen gehen analog:
>  >  
> > Mit [mm]\log[/mm] ist wohl der [mm]\ln[/mm] gemeint ...
>  >  
> > Also: es ist [mm]\ln(u)=x\gdw e^x=u[/mm] und [mm]\ln(v)=y\gdw e^y=v[/mm] nach
> > Def. Logarithmus
>  >  
> > Damit [mm]u\cdot{}v=e^x\cdot{}e^y=e^{x+y}[/mm] nach der Regel oben
> > für die Exponentialfkt.
>  >  
> > Nun wieder die Def. Logarithmus anwenden:
>  >  
> > [mm]u\cdot{}v=e^{x+y}\gdw \ln(u\cdot{}v)=x+y[/mm]
>  >  
> > Aber es ist [mm]x=\ln(u), y=\ln(v)[/mm] (siehe oben), also
> > [mm]\Rightarrow[/mm] Beh.
>  > >  

> > > Danke schonmal,
>  >  >  
> > > exeqter
> >
> > Gruß
>  >  
> > schachuzipus
> Hi,
>  
> danke für deine schnelle Antwort. Für das erste hab ich
> das ganze hinbekommen. Beim zweiten habe ich noch eine
> Frage:
>  Muss ich es für den Nachweis umschreiben in [mm]ln(1*u^{-1})[/mm] ?

Naja, ob du es musst sei mal dahingestellt, aber so kannst du es auf den ersten Fall, den du ja schon bewiesen hast, zurückführen ...

Du kannst aber auch ganz analog nach dem Schema in (a) die (c) beweisen und dann (b) als Spezialfall abhandeln  ...

Your choice ;-)


>  
> lg,
>  
> julius


LG

Ralf

Bezug
                                
Bezug
logarithmusgesetze herleiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:14 Mo 12.10.2009
Autor: MontBlanc

hi nochmal,

es tut mir wirklich leid, aber ich blicke es einfach nicht... Ich komme gerade nicht dahinter, wie es geht. ich komme vom einen nicht zum nächsten schritt.. würdest du nochmal mit dem zaunpfahl winken.

lg,

exe

Bezug
                                        
Bezug
logarithmusgesetze herleiten: Antwort
Status: (Antwort) fertig Status 
Datum: 23:33 Mo 12.10.2009
Autor: schachuzipus

Hallo nochmal,

> hi nochmal,
>  
> es tut mir wirklich leid, aber ich blicke es einfach
> nicht... Ich komme gerade nicht dahinter, wie es geht. ich
> komme vom einen nicht zum nächsten schritt.. würdest du
> nochmal mit dem zaunpfahl winken.

Welche Variante denn?

Mit dem Umschreiben?

[mm] $\ln(1)=0\gdw e^0=1$ [/mm] und [mm] $\ln\left(u\right)=y\gdw e^y=u$ [/mm]

[mm] $\Rightarrow \frac{1}{u}=\frac{e^0}{e^{y}}=e^{0}\cdot{}e^{-y}=e^{-y}$ [/mm]

Nun ist das nach Def. Log. [mm] $\gdw \ln\left(\frac{1}{u}\right)=-y$ [/mm]

Und mit [mm] $y=\ln(u)$ [/mm] ist [mm] $-y=-\ln(u)$, [/mm] also ...

>  
> lg,
>  
> exe

Gruß

schachuzipus

PS: sorry, dass es solange dauert, aber mit zunehmendem Rotweinkonsum erhöhen sich die Typos ;-)

Bezug
                                        
Bezug
logarithmusgesetze herleiten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:44 Mo 12.10.2009
Autor: MontBlanc

hi,

habe noch weiter rumprobiert und eine möglichkeit gefunden! Bin mir eben nicht sicher ob das umschreiben zulässig ist:

aus der definition aus deinem obigen post folgt:

[mm] \bruch{u}{v}=\bruch{exp(x)}{exp(y)}=exp(x)*exp(y)^{-1}=exp(x-y) [/mm]

daher:

[mm] ln\bruch{u}{v}=x-y [/mm]

[mm] ln\bruch{u}{v}=ln(u)-ln(v) [/mm]

lg und DANKE!!!

Bezug
                                                
Bezug
logarithmusgesetze herleiten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:03 Di 13.10.2009
Autor: schachuzipus

Hallo nochmal,

> hi,
>  
> habe noch weiter rumprobiert und eine möglichkeit
> gefunden! Bin mir eben nicht sicher ob das umschreiben
> zulässig ist:

Na klar, die "normalen" Potenzgesete sollte man anwenden dürfen, oder?


>  
> aus der definition aus deinem obigen post folgt:
>  
> [mm]\bruch{u}{v}=\bruch{exp(x)}{exp(y)}=exp(x)*exp(y)^{-1}=exp(x-y)[/mm]

Jo, bzw. [mm] $\frac{u}{v}=\frac{e^x}{e^y}=e^y\cdot{}e^{-y}=e^{x+(-y)}=e^{x-y}$ [/mm] nach deiner schönen Regel für die Exponentialfkt., aus der du alles folgern sollst, Rest analog zu deiner Rechnung!

>  
> daher:
>  
> [mm]ln\bruch{u}{v}=x-y[/mm]
>  
> [mm]ln\bruch{u}{v}=ln(u)-ln(v)[/mm]
>  
> lg und DANKE!!!

Jo, gerne

Schönen Abend

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]