matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysislokale Extrema
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - lokale Extrema
lokale Extrema < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lokale Extrema: Frage
Status: (Frage) beantwortet Status 
Datum: 21:36 Mo 07.03.2005
Autor: Plantronics

Hi,

folgende Aufgabe sollte ich lösen:

[Dateianhang nicht öffentlich]

Aber irgendwie blicke ich da gar nicht durch!

Ich habe mir einige Graphen zeichnen lassen, und habe eigentlich immer festgestellt, dass es ein minimum gibt (zumindest bei [mm] $h_{1}$ [/mm] wenn die ursprünglichen auch ein minimum hatten. Daher glaube ich, dass es stimmt. Nur weiss ich nicht wie ich das zeigen könnte.
Derzeit habe ich mir folgendes überlegt:
Hätte [mm] $h_{1}$ [/mm] ein Extremum, so müsste [mm] $h_{1}'=0$ [/mm] sein (in (a,b)). Aber alles was ich über [mm] $h_{1}'$ [/mm] weiss ist ja, das [mm] $h_{1}'=f'+g'$ [/mm] ist, und f' im Intervall (a,b) stets >0 und g' stets <0. Nur hilft mir das auch nicht wirklich weiter.
Hat irgendwer irgendwelche Vorschläge und könnte mir helfen?

mfg,
  der unwissende Martin

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
        
Bezug
lokale Extrema: Gedankenanstoss
Status: (Antwort) fertig Status 
Datum: 00:04 Di 08.03.2005
Autor: Paulus

Lieber Plantronics

ich glaube, du machst es dir ein Bisschen zu einfach. Wie hast du dir das denn zum Beispiel zeichnen lassen? x ist ja ein m-Tupel, und y ein n-Tupel. Es sind ja Elemente eines m-dimensionalen respektive n-dimensionalen Raumes.

Ich denke, du solltest eher über die Definition von strengem Minimum resp. Maximum gehen:

f hat an der Stelle a ein strenges Minimum wenn gilt:
[mm] $f(a+\Delta [/mm] a) > f(a)$ für alle [mm] $\Delta [/mm] a [mm] \not [/mm] = [mm] \vec{0}$ [/mm]

Das könnte man auch so schreiben:
[mm] $f(a+\Delta [/mm] a) = f(a) + [mm] \epsilon_f$ [/mm] für alle [mm] $\Delta [/mm] a [mm] \not [/mm] = [mm] \vec{0}$, [/mm]

Oder g hat an der Stelle g ein strenges Minimum wenn gilt:
[mm] $g(b+\Delta [/mm] b) > g(b)$ für alle [mm] $\Delta [/mm] b [mm] \not [/mm] = [mm] \vec{0}$ [/mm] resp.
[mm] $g(b+\Delta [/mm] b) = g(b) + [mm] \epsilon_g$ [/mm] für alle [mm] $\Delta [/mm] b [mm] \not [/mm] = [mm] \vec{0}$ [/mm]

Wobei wie allgemein üblich noch vorausgesetzt wird, dass die beiden Epsilon streng grösser als Null sind.

(Beachte, dass in der 1. Gleichung der Nullvektor des m-dimensionalen Raumes gemeint ist, für die 2. Gleichung aber jener des n-dimensionalen Raumes)

Für [mm] $h_1$ [/mm] gilt zum Beispiel:

[mm] $h_1(a+\Delta a,b+\Delta [/mm] b)=$
[mm] $f(a+\Delta a)+g(b+\Delta [/mm] b)=$
[mm] $f(a)+\epsilon_f+g(b) [/mm] + [mm] \epsilon_g [/mm] > f(a)+g(b)$

Damit ist gezeigt, dass, falls f in a und g in b je ein strenges Minimum haben, [mm] $h_1$ [/mm] in (a,b) auch eines hat.

Für [mm] $h_2$ [/mm] sähe das dann etwa so aus:

[mm] $h_2(a+\Delta a,b+\Delta [/mm] b)=$
[mm] $f(a+\Delta a)*g(b+\Delta [/mm] b)=$
[mm] $(f(a)+\epsilon_f)*(g(b) [/mm] + [mm] \epsilon_g)=$ [/mm]
[mm] $f(a)*g(b)+\epsilon_g*f(a)+\epsilon_f*g(b)+\epsilon_f*\epsilon_g$ [/mm]

Hier musst du Fallunterscheidungen machen. Wenn f und g positiv sind (je an der Stelle a resp. b), dann hat auch [mm] $h_2$ [/mm] ein strenges Minimum (an der Stelle (a,b)). Wenn aber f(a) und g(b) negativ sind, dann liegt bei [mm] $h_2(a,b)$ [/mm] ein strenges Maximum vor.  Haben die beiden Funktionen aber unterschiedliche Vorzeichen, dann liegt eher so etwas in der Art eines Sattelpunktes vor, wenngleich der etwas schwer vorzustellen ist, wenn m und n grösser als 1 sind!

Falls f(a) oder g(b) Null sind, musst du wohl noch eine gesonderte Betrachtung anstellen.

Kannst du die Aufgabe jetzt selber weiter bearbeiten?

Mit lieben Grüssen

Paul

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]