matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnunglokale Änderungsrate bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differenzialrechnung" - lokale Änderungsrate bestimmen
lokale Änderungsrate bestimmen < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lokale Änderungsrate bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:05 Fr 01.10.2010
Autor: Sabine_B.

Aufgabe
Ein Trinkglas hat die Form eines auf der Spitze stehenden Kegels mit Grundkreisradius R und Höhe H. Sei h die Höhe des eingefüllten Getränkes.
Bestimmen Sie für die Volumenfunktion V: h ->V(h)  die lokale Änderungsrate an der Stelle h0 sowohl durch formales Ableiten wie durch Bildung des Differentialquotienten


Hallo,
mein Bruder kam eben zu mir und wollte diese Aufgabe mit mir besprechen. Wenn ich das richtig sehe, kann ich V(h) = 1/3 [mm] \pi r^2 [/mm] h angeben und r mit Hilfe der Strahlensätze in r= (h*R)/H umformen, so dass ich erhalte:
V(h) = 1/3 [mm] \pi ((h*R)/H)^2 [/mm] h
Das kann ich ja schließlich ableiten, so dass ich:
V'(h) = [mm] \pi ((h*R)/H)^2 [/mm] = [mm] \pi r^2 [/mm] bekomme.
Aber wie sieht das denn mit dem Differentialquotienten aus. Wenn ich mit der h-Methode, also:
[mm] \limes_{x\rightarrow\ 0} [/mm] (f(h+x)-f(h))/x
argumentiere, komme ich auf ein falsches, bzw. anderes Ergebnis.
Wäre schön, wenn mir da jemand helfen könnte.

Liebe Grüße
Sabine

        
Bezug
lokale Änderungsrate bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:34 Fr 01.10.2010
Autor: Blech

Hi,

alles was Du geschrieben hast stimmt.

>  V'(h) = [mm]\pi ((h*R)/H)^2[/mm] = [mm]\pi r^2[/mm] bekomme.

Laß lieber [mm] $\pi \frac{R^2}{H^2} h^2$ [/mm] stehen. Du willst ja alles in Abhängigkeit von h.


> Aber wie sieht das denn mit dem Differentialquotienten aus.
> Wenn ich mit der h-Methode, also:
>  [mm]\limes_{x\rightarrow\ 0}[/mm] (f(h+x)-f(h))/x
>  argumentiere, komme ich auf ein falsches, bzw. anderes
> Ergebnis.

Es wäre nett, wenn Du geschrieben hättest, was Du rechnest. Der Ansatz stimmt, aber wo Du Dich verrechnest, kann ich Dir so auch nicht sagen.

Nachdem Du f eingesetzt hast, sollte da stehen

[mm] $\frac\pi [/mm] 3 [mm] \left(\frac RH\right)^2\lim_{x\to 0} \frac{(h+x)^3-h^3}{x}$ [/mm]

da mußt Du nur noch ausmultiplizieren.

ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]