matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und Geometrie"max" statt Summenzeichen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Topologie und Geometrie" - "max" statt Summenzeichen
"max" statt Summenzeichen < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

"max" statt Summenzeichen: Tipp
Status: (Frage) beantwortet Status 
Datum: 13:22 Di 24.12.2013
Autor: lprulzcrossover

Aufgabe
Für v ∈ [mm] \IR^{n} [/mm] sind die drei Normen wie folgt definiert:

[mm] \parallel v\parallel_{1} [/mm] = [mm] \summe_{i=1}^{n}|v_{i}| [/mm]

[mm] \parallel v\parallel_{2} [/mm] = [mm] \wurzel{\summe_{i=1}^{n}|v_{i}|^{2}} [/mm]

[mm] \parallel v\parallel_{\infty} [/mm] = max (ab i=1, bis n) [mm] |v_{i}| [/mm]

Ergänzen Sie ein Hauptprogramm zum testen, das die drei Funktionen für Vektoren der Länge 100 – initialisiert mit Zufallszahlen aus [0; 1) – aufruft.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Zunächst mal weiß ich nicht, ob dies das richtige Unterforum ist, weil ich nicht genau weiß, zu welchem Gebiet dies gehört.

Also die Frage ist: Was bedeutet das:
[mm] \summe_{i=1}^{n} [/mm]
nur anstelle des Summenzeichens ein "max" ?
Habe es noch nie gesehen und weiß auch nicht wie man damit umgeht, bzw. was man da überhaupt mit berechnet.
Es wird in einer Informatikaufgabe gefordert, daher die Frage.

MfG und frohes Fest :)

        
Bezug
"max" statt Summenzeichen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:34 Di 24.12.2013
Autor: Diophant

Hallo,

die letzte Norm ist ganz einfach die []Maximumsnorm. Sie ist (für Vektoren) definiert als Maximum der Beträge der einzelnen Komponenten eines Vektors. In der Informatik wird es hier sicherlich u.a. darum gehen, einen Algorithmus zu bauen, der dieses Maximum möglichst schnell aufspürt (sofern die verwendete Sprache nicht schon eine Routine bzw. Methode dafür mitbringt).

PS: bei der euklidischen Norm (das ist die mittlere) ist dir das Quadrat abhanden gekommen...

Gruß, Diophant

Bezug
        
Bezug
"max" statt Summenzeichen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:08 Di 24.12.2013
Autor: fred97


> Für v ∈ [mm]\IR^{n}[/mm] sind die drei Normen wie folgt
> definiert:
>  
> [mm]\parallel v\parallel_{1}[/mm] = [mm]\summe_{i=1}^{n}|v_{i}|[/mm]
>  
> [mm]\parallel v\parallel_{2}[/mm] =
> [mm]\wurzel{\summe_{i=1}^{n}|v_{i}|}[/mm]


Da soll wohl stehen:  [mm]\parallel v\parallel_{2}[/mm] =  [mm]\wurzel{\summe_{i=1}^{n}|v_{i}|^2}[/mm]

>  
> [mm]\parallel v\parallel_{\infty}[/mm] = max (ab i=1, bis n)
> [mm]|v_{i}|[/mm]
>  
> Ergänzen Sie ein Hauptprogramm zum testen, das die drei
> Funktionen für Vektoren der Länge 100 – initialisiert
> mit Zufallszahlen aus [0; 1) – aufruft.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Zunächst mal weiß ich nicht, ob dies das richtige
> Unterforum ist, weil ich nicht genau weiß, zu welchem
> Gebiet dies gehört.
>  
> Also die Frage ist: Was bedeutet das:
>  [mm]\summe_{i=1}^{n}[/mm]

Für n Zahlen [mm] a_1, ...,a_n [/mm] iat


[mm]\summe_{i=1}^{n}a_i=a_1+a_2+....+a_n[/mm]

FRED

>  nur anstelle des Summenzeichens ein "max" ?
>  Habe es noch nie gesehen und weiß auch nicht wie man
> damit umgeht, bzw. was man da überhaupt mit berechnet.
>  Es wird in einer Informatikaufgabe gefordert, daher die
> Frage.
>  
> MfG und frohes Fest :)


Bezug
        
Bezug
"max" statt Summenzeichen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:46 Di 24.12.2013
Autor: Marcel

Hallo,

> Für v ∈ [mm]\IR^{n}[/mm] sind die drei Normen wie folgt
> definiert:
>  
> [mm]\parallel v\parallel_{1}[/mm] = [mm]\summe_{i=1}^{n}|v_{i}|[/mm]
>  
> [mm]\parallel v\parallel_{2}[/mm] =
> [mm]\wurzel{\summe_{i=1}^{n}|v_{i}|}[/mm]
>  
> [mm]\parallel v\parallel_{\infty}[/mm] = max (ab i=1, bis n)
> [mm]|v_{i}|[/mm]
>  
> Ergänzen Sie ein Hauptprogramm zum testen, das die drei
> Funktionen für Vektoren der Länge 100 – initialisiert
> mit Zufallszahlen aus [0; 1) – aufruft.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Zunächst mal weiß ich nicht, ob dies das richtige
> Unterforum ist, weil ich nicht genau weiß, zu welchem
> Gebiet dies gehört.
>  
> Also die Frage ist: Was bedeutet das:
>  [mm]\summe_{i=1}^{n}[/mm]
>  nur anstelle des Summenzeichens ein "max" ?
>  Habe es noch nie gesehen und weiß auch nicht wie man
> damit umgeht, bzw. was man da überhaupt mit berechnet.
>  Es wird in einer Informatikaufgabe gefordert, daher die
> Frage.

es ist mir irgendwie unklar, ob Deine Frage schon beantwortet wurde (das
liegt an Deiner etwas komischen "Konstruktion" der Frage [siehe rote
Markierung oben]), aber mal einfach der Vollständigkeit wegen:

    [mm] $\max_{i=1}^n |v_i|=\max\{|v_i|:\;\;i=1,...,n\}=\max\left(\bigcup_{i=1}^n \{|v_i|\}\right)$ [/mm]

Beispiel:
Ist [mm] $v=(1,-3,12,-24)=(v_1,v_2,v_3,v_4),$ [/mm] so ist

    [mm] $\|v\|_\infty=\max_{i=1}^4 |v_i|=\max\{|v_i|:\;\;i=1,...,4\}=\max\{|v_1|,|v_2|,|v_3|,|v_4|\}=\max\{1,3,12,24\}=24\,.$ [/mm]

(Allgemein: [mm] $\max [/mm] M$ bezeichnet das Maximum der Menge [mm] $M\,.$ [/mm] D.h. ist $M [mm] \subseteq \IR$ [/mm]
nach oben beschränkt, so existiert bereits [mm] $\sup [/mm] M =:S [mm] \in \IR\,.$ [/mm] Falls nun zudem $S [mm] \in [/mm] M$
gilt [das ist übrigens bei endlichen Mengen stets der Fall - eine Menge heißt
dabei endlich, falls sie nur endlich viele Elemente besitzt!], so existiert [mm] $\max [/mm] M$
und es ist zudem [mm] $S=\max [/mm] M.$ Genaueres dazu kannst Du auch

    []diesem Skript, ab Kapitel 3

entnehmen!)

P.S. Generell kann man solche Symbole in vielen Analysis-Büchern nachschlagen;
bspw. in Heusers Werk Analysis I.

Gruß,
  Marcel

Bezug
        
Bezug
"max" statt Summenzeichen: Gelöst
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:23 Di 24.12.2013
Autor: lprulzcrossover

Danke an Diophant und Marcel! Hat mir sehr geholfen. :)

P.S. Der Fehler bei der euklidischen Norm war ein Tipp-/Flüchtigkeitsfehler und ein "max" Symbol habe ich bei dem Formelsalat unten nicht entdeckt, daher die "komische" Fragestellung. :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]