matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebramaximales Ideal
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Algebra" - maximales Ideal
maximales Ideal < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

maximales Ideal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:59 So 03.10.2010
Autor: T_sleeper

Aufgabe
Sei R ein kommutativer Ring mit 1. Sei [mm] a\in [/mm] R. Zeigen Sie, dass a genau dann in jedem maximalen Ideal enthalten ist, wenn 1-ax für jedes [mm] x\in [/mm] R invertierbar ist.

Hallo,

ich sehe hier wirklich gar nichts. Man soll für den Beweis verwenden, dass jedes Ideal in einem maximalen Ideal enthalten ist. Ich weiß aber nicht mal, wo ich das einbringen soll.

Ist 1-ax für jedes [mm] x\in [/mm] R invertierbar, dann gibt es ein [mm] b\in [/mm] R: b(1-ax)=1. Was ich jetzt allerdings mit dem b weiter machen kann, weiß ich nicht, schließlich ist das eine Einheit, also mit Idealen siehts dann schlecht aus.

Wenn 1-ax eine Einheit ist, dann ist das in keinem maximalen Ideal enthalten.

Ich sehe es leider wirklich nicht, auch nicht, wie ich anfangen soll.

Grüße

        
Bezug
maximales Ideal: Antwort
Status: (Antwort) fertig Status 
Datum: 00:27 Mo 04.10.2010
Autor: felixf

Moin!

> Sei R ein kommutativer Ring mit 1. Sei [mm]a\in[/mm] R. Zeigen Sie,
> dass a genau dann in jedem maximalen Ideal enthalten ist,
> wenn 1-ax für jedes [mm]x\in[/mm] R invertierbar ist.
>  Hallo,
>  
> ich sehe hier wirklich gar nichts. Man soll für den Beweis
> verwenden, dass jedes Ideal in einem maximalen Ideal
> enthalten ist. Ich weiß aber nicht mal, wo ich das
> einbringen soll.
>
> Ist 1-ax für jedes [mm]x\in[/mm] R invertierbar, dann gibt es ein
> [mm]b\in[/mm] R: b(1-ax)=1. Was ich jetzt allerdings mit dem b
> weiter machen kann, weiß ich nicht, schließlich ist das
> eine Einheit, also mit Idealen siehts dann schlecht aus.
>  
> Wenn 1-ax eine Einheit ist, dann ist das in keinem
> maximalen Ideal enthalten.

Genau.

Sei $M$ ein maximales Ideal und angenommen, $1 - a x$ ist fuer jedes $a [mm] \in [/mm] R$ invertierbar. Schau dir jetzt die kanonische Projektion [mm] $\pi [/mm] : R [mm] \to [/mm] R/M =: K$ an. Dies ist ein Ringhomomorphismus.

In $K$ ist also $1 - b [mm] \pi(x)$ [/mm] fuer jedes $b [mm] \in [/mm] K$ invertierbar. (Da [mm] $\pi$ [/mm] surjektiv ist.) Das kann aber nur sein, wenn [mm] $\pi(x) [/mm] = 0$ ist (warum?). Daraus folgt, dass $x [mm] \in [/mm] M$ liegt (warum?).



Nun zur anderen Richtung. Sei $x$ in jedem maximalen Ideal enthalten, und sei $a [mm] \in [/mm] R$. Dann ist auch $a x$ in jedem maximalen Ideal enthalten. Du musst jetzt daraus folgern, dass $1 - a x$ invertierbar ist. Waere es das nicht, so waer $(1 - a x)$ ein echtes Ideal, womit es ein maximales Ideal $M$ gibt mit $(1 - a x) [mm] \subseteq [/mm] M$. Fuehre das jetzt zu einem Widerspruch (dazu, dass $a x [mm] \in [/mm] M$ ist).

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]