matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysismehrmalige partielle Intergration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - mehrmalige partielle Intergration
mehrmalige partielle Intergration < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

mehrmalige partielle Intergration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:03 Di 06.07.2004
Autor: andreas99

Hi,

ich hab Probleme bei einer Aufgabe die mit Hilfe zweimaliger partieller Integration zu lösen sein soll.

[mm] \integral_{}^{} {e^x \cdot cos (x) dx} [/mm]

Die erste partielle Integration hab ich so gemacht:

[mm] u(x)=e^x [/mm] , v'(x)=cos x , [mm] u'(x)=e^x [/mm] , v(x)=sin x

[mm] \integral_{}^{} {e^x \cdot cos (x) dx} [/mm] = [mm] e^x \cdot [/mm] sin x [mm] \cdot \integral_{}^{} {e^x \cdot sin (x) dx} [/mm]

Ist die erste Integration so richtig? Jetzt hab ich noch eine ganze Menge andere Integrationen gemacht, aber ich bekomme keine Form welche mit dem im Lösungsverzeichnis angegebene Stammintegral übereinstimmt.

Ergebnis soll sein:

[mm] F(x)=\bruch{1}{2} \cdot [/mm] (sin x + cos x)+C

Irgendwelche Lösungstips?

Gruß
Andreas

        
Bezug
mehrmalige partielle Intergration: Antwort
Status: (Antwort) fertig Status 
Datum: 12:51 Di 06.07.2004
Autor: sijaboeh

Hi

>ich hab Probleme bei einer Aufgabe die mit Hilfe zweimaliger partieller Integration zu lösen sein soll.
>Jetzt hab ich noch eine ganze Menge andere Integrationen gemacht, aber ich bekomme keine Form welche mit dem im >Lösungsverzeichnis angegebene Stammintegral übereinstimmt.

Ja, da ist der Hund begraben !
Wenn du 2-mal Integrierst, so wie du es versucht hast, bekommst du auch keine andere Form:

sin -> cos -> sin
e -> e -> e

>Irgendwelche Lösungstips?
Die Lösung: Phönix aus der Asche !


$ [mm] \integral_{}^{} {e^x \cdot cos(x) dx} [/mm] $ = $ [mm] e^x \cdot [/mm] sin(x) $ - $ [mm] \integral_{}^{} {e^x \cdot sin(x) dx} [/mm] $
$ [mm] \integral_{}^{} {e^x \cdot sin(x) dx} [/mm] $ = $ [mm] -e^x \cdot [/mm] cos(x) $ + $ [mm] \integral_{}^{} {e^x \cdot cos(x) dx} [/mm] $
Einsetzen ergibt:
$ [mm] \integral_{}^{} {e^x \cdot cos(x) dx} [/mm] $ = $ [mm] e^x \cdot [/mm] sin(x) $ + $ [mm] e^x \cdot [/mm] cos(x) $ - $ [mm] \integral_{}^{} {e^x \cdot cos(x) dx} [/mm] $
Umformen:
$ 2 [mm] \cdot \integral_{}^{} {e^x \cdot cos(x) dx} [/mm] $ = $ [mm] e^x \cdot [/mm] sin(x) + [mm] e^x \cdot [/mm] cos(x) $
Lösung :

$ [mm] \integral_{}^{} {e^x \cdot cos(x) dx} [/mm] $ = [mm] $\bruch{1}{2}$ [/mm] ( $ [mm] e^x \cdot [/mm] sin(x) + [mm] e^x \cdot [/mm] cos(x) $ ) + C

Der Name bezeichnet die Technik, auf die Lösung schliessen zu können ohne das Integral wirklich direkt berechnet zu haben.
cu

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]