matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehremengen logisch äquivalent
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mengenlehre" - mengen logisch äquivalent
mengen logisch äquivalent < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

mengen logisch äquivalent: tipp
Status: (Frage) beantwortet Status 
Datum: 16:48 So 21.10.2007
Autor: milky77

Aufgabe
zeigen sie dass folgende Aussagen über gegebene mengen A und B paarweise logisch äquivalent sind:
1. A = A  [mm] \cap [/mm] B
2. B = A [mm] \cup [/mm] B
3. A \ B = [mm] \emptyset [/mm]
4. B\ (B \ A) = A
5. A [mm] \subseteq [/mm] B

Kann mir jemand einen tipp geben, wie ich das rechnen soll?
hab irgendwie gar keinen ansatz.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
mengen logisch äquivalent: Antwort
Status: (Antwort) fertig Status 
Datum: 17:19 So 21.10.2007
Autor: Aoy

Hallo
Da muss man nix rechnen.
nur ein bissel überlegen! wie kann den 1 richtig sein? such mal von 2 bis 4.
und ists dann auch umgekehrt richtig? dann ist es äquivalent.
entsprechend mit den anderen Teilen.
MvG Aoy

Bezug
        
Bezug
mengen logisch äquivalent: Antwort
Status: (Antwort) fertig Status 
Datum: 18:44 So 21.10.2007
Autor: angela.h.b.


> zeigen sie dass folgende Aussagen über gegebene mengen A
> und B paarweise logisch äquivalent sind:
>  1. A = A  [mm]\cap[/mm] B
>  2. B = A [mm]\cup[/mm] B
>  3. A \ B = [mm]\emptyset[/mm]
>  4. B\ (B \ A) = A
>  5. A [mm]\subseteq[/mm] B
>  Kann mir jemand einen tipp geben, wie ich das rechnen
> soll?

Hallo,

ich werde Dir jetzt exemplarisch zeigen, wie man 1. ==> 2. zeigt.

Behauptung  A = A  [mm]\cap[/mm] B ==> B = A [mm]\cup[/mm] B

Beweis: Es sei A = A  [mm]\cap[/mm] B . (Das ist ja die Voraussetzung.)

Zu zeigen ist nun

i) [mm] B\subseteq [/mm] A [mm]\cup[/mm] B
und
ii) A [mm]\cup[/mm] B [mm] \subseteq [/mm] B        (denn so ist ja die Gleichheit von Mengen erklärt.)


zu i)

Sei x [mm] \in [/mm] B ==> x [mm] \in [/mm] A oder x [mm] \in [/mm] B ==> x [mm] \in A\cup [/mm] B,

also ist [mm] B\subseteq A\cup [/mm] B.


zu ii)

Sei [mm] x\in A\cup [/mm] B

==> [mm] x\in [/mm] A oder [mm] x\in [/mm] B    (nach Def. der Vereinigung)

==> [mm] x\in [/mm] A  [mm]\cap[/mm] B  oder [mm] x\in [/mm] B     (nach Voraussetzung A = A  [mm]\cap[/mm] B)

==> [mm] (x\in [/mm] A und [mm] x\in [/mm] B) oder [mm] x\in [/mm] B     (nach Def. der Schnittmenge)

==> [mm] (x\in [/mm] A und [mm] x\in [/mm] B) oder [mm] (x\in [/mm] B und [mm] x\in [/mm] B)      (Distributibgesetz)

==> x [mm] \in [/mm] B                       (denn in beiden möglichen Fällen ist [mm] x\in [/mm] B)

Somit gilt [mm] A\cup [/mm] B [mm] \subseteq [/mm] B


Ich habe Dir das extra ausführlich gezeigt, damit Du siehst, was von Dir erwartet wird. Beachte bitte die Begründungen. Tue nichts, was Du nicht begründen kannst.

Du hast nun mehrere Möglichkeiten, weiterzumachen. Du könntest jetzt zeigen, daß auch die Richtung 2. ==> 1. gilt.


Eine andere (arbeitsparende) Möglichkeit: Du zeigst 1. ==> 2., 2==>3, 3==> 4., 4.==> 5.,  5. ==> 1.     (Ringschluß)

Du kannst ggf. auch eine einfachere Reihenfolge wählen im Ringschluß.

Gruß v. Angela









Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]