matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblememinimaler materialverbrauch
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Extremwertprobleme" - minimaler materialverbrauch
minimaler materialverbrauch < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

minimaler materialverbrauch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:44 So 03.06.2007
Autor: naomi19

Aufgabe
ein quadratförmiger, oben offener container soll halb so hoch sein, wie breit, und ein volumen von 108m³ besitzen. Welche Maße muss der Container erhalten, damit der Materialverbrauch minimal ist?

konnte diese aufgabe in einer klausur auch schon nicht lösen.

Hierbei wäre mein Ansatz
V:   108m³= x²*0,5x

für den Materialverbrauch benötige ich den Flächeninhalt.
Hier wählte ich
A=x² + 4(x*0,5x)
aufgrund der grundfläche x² und den 4 seitenflächen x*0,5x

hier ist bereits angeblich ein fehler denn x² soll *4 genommen werden.

So wie ich die Aufgabe verstanden hab verstehe ich diese korrektur nicht.



Desweiteren fand ich keinen Weg  A' = 0 zu setzen um ein minimales Ergebnis, also ein Tiefpunkt zu errechnen

Ich bitte um Klärung, da ich das Thema gerade fürs Abi wiederhole.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt




        
Bezug
minimaler materialverbrauch: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:11 So 03.06.2007
Autor: hase-hh

moin,

was bedeutet: quadratförmiger container? ein container mit quadratischer grundfläche, oder ein würfel (das widerspräche aber schon der nächsten bedingung), also ein quader. und dann ist doch nur dein ansatz sinnvoll, oder nicht?!

hätte ich als grundfläche ein rechteck, dann würde sich die mantelfläche nicht aus 4 quadraten zusammensetzen (können) !

was ist eigentlich mit der länge?

ist wirklich l=b ?

***
im moment vermute ich, du meinst: ein quaderförmiger container!

dann  wäre das Volumen:

V = a*b*c    

a= Länge, b= Breite, c= Höhe

wobei die Höhe   c = [mm] \bruch{1}{2}*b [/mm]   sein soll

und I.

108 = a*b* [mm] \bruch{1}{2}b [/mm]  

216 = [mm] a*b^2 [/mm]


Nebenbedingung

=> a = [mm] \bruch{216}{b^2} [/mm]


Zielfunktion:

O = Grundfläche + Mantelfläche   (da ja die Deckfläche nicht existiert bzw. "offen" ist)

O = a*b  + 2*a*c + 2*b*c

O = a*b + [mm] 2*a*\bruch{1}{2}b [/mm] + [mm] 2*b*\bruch{1}{2}b [/mm]

O = 2*a*b + b*b


O(b) = 2* [mm] \bruch{216}{b^2}*b [/mm]  + [mm] b^2 [/mm]

O(b) = [mm] \bruch{432}{b} [/mm] + [mm] b^2 [/mm]


O'(b) = [mm] \bruch{-432}{b^2} [/mm] + 2b

0 = [mm] \bruch{-432}{b^2} [/mm] + 2b

432 = [mm] 2b^3 [/mm]

216 = [mm] b^3 [/mm]

b= 6

und da O''(6) >0  ist dort auch ein Maximum.


dein quadratförmig hat viel kopfzerbrechen gemacht, der rest war danach nicht so schwer...




gruß
wolfgang





Bezug
                
Bezug
minimaler materialverbrauch: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:49 Mo 04.06.2007
Autor: naomi19

hallo wolfgang,
also heißt quaderförmig, ein rechteck als grundfläche.
Nur was mich an der sache noch stört ist eine zeichnung der lehrerin zur korrektur, in der die grundfläche ein quadrat darstellt und die mantelfläche durch rechtecke gegeben sind.

Ich hoffe mal dass sie dann entweder bei der ersten oder bei der zweiten korrektur ein fehler gemacht hat, da sich das auch wieder widersprechen würde.

aber viielen dank

Bezug
                        
Bezug
minimaler materialverbrauch: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:08 Mo 04.06.2007
Autor: Steffi21

Hallo,

wenn du mit den Bedingungen weiter rechnest, b=6m, [mm] a=\bruch{216}{b^{2}}=6m, [/mm] d.h. es entsteht ein Quader mit Quadrat als Grundfläche von 6m mal 6m und einer Höhe von 3m, deine Lehrerin hat also zu einem gewissen Teil die Lösung "verraten", quadratförmig, das bezieht sich auf die Grundfläche und es entsteht ja auch ein Quadrat, als Zusatz: willst du mit einer bestimmten Zaunlänge ein Grundstück mit maximaler Fläche einzäunen, so wird es ein Quadrat, noch besser wird es bei einem Kreis, aber in deiner Aufgabe ist ja nicht nach einem Zylinder gefragt,

Steffi


Bezug
                        
Bezug
minimaler materialverbrauch: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:32 Mo 04.06.2007
Autor: hase-hh


> hallo wolfgang,
>  also heißt quaderförmig, ein rechteck als grundfläche.

war das jetzt eine frage? dann lautet die antwort nein!

quaderförmig heißt, dass der körper, der betrachtet wird die form eines quaders hat.  es gibt quader mit rechteckiger grundfläche und quader mit quadratischer grundfläche...


>  Nur was mich an der sache noch stört ist eine zeichnung
> der lehrerin zur korrektur, in der die grundfläche ein
> quadrat darstellt und die mantelfläche durch rechtecke
> gegeben sind.
> Ich hoffe mal dass sie dann entweder bei der ersten oder
> bei der zweiten korrektur ein fehler gemacht hat, da sich
> das auch wieder widersprechen würde.

  
im prinzip widerspricht es sich nicht; wenn du dir meine lösung ansiehst
mit b=6, dann bekommst du für a ebenfalls 6 raus. das konnte man aber zu beginn nicht sagen, daher muss ich meine skizze erstmal mit unterschiedlichen a und b machen !

gruß
wolfgang


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]