matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraminimalpolynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Algebra" - minimalpolynom
minimalpolynom < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

minimalpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:24 Di 22.01.2008
Autor: bobby

Hallo!

Könnte mir jemand vielleicht einen Hinweis zu dieser Aufgabe geben?

Sei L:K, [L:K]=2.
Beweise:
a) Ist [mm] charK\not=2, [/mm] so gibt es [mm] a\inL, e\inK [/mm] mit L=K(a), [mm] m_{a}(x)=x^{2}-e. [/mm]
b) Ist charK=2, so ist entweder für jedes [mm] a\inL\K [/mm] das Minimalpolynom von der Form [mm] m_{a}(x)=x^{2}+e [/mm] , oder es gibt [mm] a\inL [/mm] mit [mm] m_{a}(x)=x^{2}+x+e. [/mm]

Ich sehe nicht so richtig wie ich an diese Aufgabe rangehen kann und wie genau ich das beweisen kan bzw welche einzelnen Schritte ich zeigen muss...

Vielleicht hat jemand von euch eine Idee? Ihr würdet mir sehr helfen.
Vielen Dank

        
Bezug
minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 00:12 Mi 23.01.2008
Autor: felixf

Hallo Bobby

> Könnte mir jemand vielleicht einen Hinweis zu dieser
> Aufgabe geben?
>  
> Sei L:K, [L:K]=2.
>  Beweise:
>  a) Ist [mm]charK\not=2,[/mm] so gibt es [mm]a\inL, e\inK[/mm] mit L=K(a),
> [mm]m_{a}(x)=x^{2}-e.[/mm]

Waehle irgendein $a [mm] \in [/mm] L [mm] \setminus [/mm] K$. Dann ist $L = K(a + t)$ fuer jedes $t [mm] \in [/mm] K$. Wenn jetzt das Minimalpolynom von $a$ durch [mm] $x^2 [/mm] + [mm] \lambda [/mm] x + [mm] \mu$ [/mm] mit [mm] $\lambda, \mu \in [/mm] K$ gegeben ist, wie sieht das Minimalpolynom von $a + t$ aus? Wie musst du $t$ waehlen, damit es von der Form [mm] $x^2 [/mm] - e$ ist?

>  b) Ist charK=2, so ist entweder für jedes [mm]a\inL\K[/mm] das
> Minimalpolynom von der Form [mm]m_{a}(x)=x^{2}+e[/mm] , oder es gibt
> [mm]a\inL[/mm] mit [mm]m_{a}(x)=x^{2}+x+e.[/mm]

Also entweder sind sie alle von der Form, oder es gibt ein $a [mm] \in [/mm] L [mm] \setminus [/mm] K$ mit [mm] $m_a [/mm] = [mm] x^2 [/mm] + [mm] \lambda [/mm] x + [mm] \mu$ [/mm] mit [mm] $\lambda, \mu \in [/mm] K [mm] \setminus \{ 0 \}$. [/mm] Wenn du $a$ durch $s a + t$ ersetzt mit $s [mm] \in [/mm] K [mm] \setminus \{ 0 \}$ [/mm] und $t [mm] \in [/mm] K$, was passiert dann mit dem Minimalpolynom?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]