matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorien-faches Bernoulli-Experiment
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitstheorie" - n-faches Bernoulli-Experiment
n-faches Bernoulli-Experiment < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

n-faches Bernoulli-Experiment: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:45 So 10.07.2011
Autor: dy7

Aufgabe
a) Betrachten Sie ein n-faches Bernoulli-Experiment mit Erfolgswahrscheinlichkeit p =
1/3. Wie groß muss n mindestens sein, damit die relative Häufi gkeit der Erfolge mit
einer Wahrscheinlichkeit von mindestens 0,95 betragsmäßig um nicht mehr als 0,01
von p abweicht? Verwenden Sie hier die Chebychev-Ungleichung!
(Hinweis: Die Zufallsvariable X gebe die Anzahl der Erfolge des n-Fachen Bernoulli-
Experiments. Die relative Häufi gkeit der Erfolge ist somit Xn = X / n.

Gesucht wird
das kleinste n für das gilt P(|Xn - p | <  0. 01) > 0. 95)

b) Lösen Sie die Aufgabe erneut für die Erfolgswahrscheinlichkeit p = 2/3. Benutzen Sie diesmal die Näherung des Satzes von Moivre-Laplace.

Meine Frage hier ist.

Ich habe diese Hinweise zwar gegebn aber ich weiß einfach nicht wie ich auf das n komme.

ch habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
n-faches Bernoulli-Experiment: Antwort
Status: (Antwort) fertig Status 
Datum: 17:34 Mo 11.07.2011
Autor: dormant

Hi,

zunächst mal klar machen was passiert.

Wir nehmen an, dass jeder Versuch [mm] B_i [/mm] ist ein Bernoulli-Experiment mit Erfolgswahrscheinlichkeit p=1/3 ist.

Die Summe der ersten n Versuche [mm] X_n [/mm] := [mm] \sum_i^n B_{i=1} [/mm] hat somit eine Binomial-Verteilung (googlen!). Das hat einen Mittelwert von pn.

Die relative Häufigkeit (Freqenz, deshalb F) ist definiert als die mittlere Anzahl der Erfolge pro Versuch, d.h. sie ist gegeben durch:

[mm] F_n:= \bruch{\sum_i^n B_i }{n}. [/mm]

Nun hat [mm] F_n [/mm] einen Mittelwert von [mm] \bruch{np}{n}=p [/mm] und eine Standardabweichung von [mm] \wurzel{\bruch{p(1-p)}{n}} [/mm] (nachrechnen!).

Gefragt wird nach dem kleinsten n, s.d.

[mm] \IP(|F_n-p|<0,01)>0,95. [/mm]

Es wird auch auf die Chebishev-Ungleichung hingewiesen. Diese besagt, dass für eine Zufallsvariable Y, deren Erwartungswert (=Mittelwert) [mm] \mu [/mm] ist, und deren Varianz [mm] \sigma^2 [/mm] eindlich ist, Folgendes gilt:

[mm] \IP(|Y-\mu|\ge k\sigma)\le\bruch{1}{k^2} [/mm]

für jede Konstante k.

Mit einer Umformung (nachdenken, machen!) kann man die Chebishev-Ungleichung auch so schreiben:

[mm] \IP(|Y-\mu|1-\bruch{1}{k^2}, [/mm]

was auch die Form ist, die wir brauchen. Einsetzen, ausrechnen.

Grüße,
dormant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]