matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikn Wörter , Anzahl
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Kombinatorik" - n Wörter , Anzahl
n Wörter , Anzahl < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

n Wörter , Anzahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:38 Mi 23.04.2014
Autor: pc_doctor

Hallo,

folgendes Abzahlproblem:
a)

Ich habe ein Alphabet [mm] \summe_{}^{} [/mm] Stern  , dieses Alphabet ist die Menge der Wörter , die man aus den Buchstaben von [mm] \summe_{}^{} [/mm] bilden kann ( diese Info ist eigentlich nicht so wichtig, da sich die Aufgabe auf etwas anderes bezieht).

Ich soll jetzt berechnen, wie viele Wörter in [mm] \summe_{}^{} [/mm] Stern die Länge n haben bzw aus n Buchstaben bestehen.

Das ist für mich ein Abzählproblem und komme auf keinen Ansatz.


c) Hier soll ich berechnen, wie viele Palindrome die Länge n haben.


Ich habe versucht, das mit einem Beispiel {Hallo,Name} nachzuvollziehen, aber ich weiß nicht, wie ich das berechnen soll. Es ist zwar mehr Informatik, aber dieses Problem ist ein mathematisches..

Ein kleiner Tipp wäre nett.

Vielen Dank im Voraus.

        
Bezug
n Wörter , Anzahl: Antwort
Status: (Antwort) fertig Status 
Datum: 01:19 Do 24.04.2014
Autor: Teufel

Hi!

Ok, das ist alles etwas durcheinander. Du meinst sicher folgendes:
[mm] \Sigma [/mm] ist ein Alphabet (=endliche Menge) und [mm] \Sigma^* [/mm] ist die Menge aller Wörter (=Konkatenationen von Zeichen aus [mm] \Sigma) [/mm] über [mm] \Sigma. [/mm]

Wie viele Wörter haben jetzt Länge $n$? Sei dafür mal [mm] |\Sigma|=k, [/mm] d.h. dein Alphabet habe $k$ Zeichen. Dann sieh das mal so: Für das erste Zeichen hast du k Möglichkeiten, kein Problem. Für die ersten 2 Zeichen hast du wie viele Möglichkeiten? An der ersten Position $k$ und an der zweiten auch. Wie viele sind das insgesamt? Und wie sieht es dann für allgemeines $n$ aus?

b) Hier hast du weniger Möglichkeiten, denn das Zeichen an der Stelle 1 legt ja schond as Zeichen an der Stelle n fest (und umgekehrt). Das zeichen an der Stelle 2 muss mit dem Zeichen an der Stelle n-1 übereinstimmen usw.

Hilft dir das weiter?

Bezug
                
Bezug
n Wörter , Anzahl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:19 Do 24.04.2014
Autor: pc_doctor

Hallo,
ja , vielen Dank, deine Antwort hat mir weitergeholfen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 1m 6. schokoschnecke
UAnaRn/Extremwerte mit Nebenbedingung
Status vor 22m 10. Maxi1995
UAnaR1/Reaktion - erwünscht
Status vor 2h 46m 2. fred97
DiffGlGew/Lösung der DGL bestimmen
Status vor 2h 50m 2. fred97
SLinA/Eigenvektor bestimmen
Status vor 9h 10m 8. Gonozal_IX
UAnaR1Funk/L Beweis ohne Logarithmusdef.
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]