matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihennicht offene Mengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - nicht offene Mengen
nicht offene Mengen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nicht offene Mengen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 23:24 Mi 03.12.2008
Autor: Walodja1987

Aufgabe
Gegeben sei die Menge M := {x ∈ R : x = [mm] m/2^{n} [/mm] für ein m ∈ Z und ein n ∈ N}. Zeigen Sie:
a) Weder M noch R \ M sind offen in R.

Ich habe noch so meine Probleme solche Beweise zu führen. Ich weiß eigentlich, was offene und nicht offene Mengen sind, aber wie kann ich das hier anwenden. Es wird behauptet, dass weder M noch das Komplement von M in R offen sind, d.h. es gibt eine Umgebung eines Punktes x, die nicht ganz in M liegt.
Hilft mir hier ein Widerspruchsbeweis weiter?

Danke für jede Antwort

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
nicht offene Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:27 Do 04.12.2008
Autor: Marcel

Hallo,

> Gegeben sei die Menge M := [mm] \{x \in \IR : x = m/2^{n} \text{für ein } m \in \IZ \text{ und ein } n \in \IN\}. [/mm] Zeigen Sie:
>  a) Weder M noch R \ M sind offen in R.
>  Ich habe noch so meine Probleme solche Beweise zu führen.
> Ich weiß eigentlich, was offene und nicht offene Mengen
> sind, aber wie kann ich das hier anwenden. Es wird
> behauptet, dass weder M noch das Komplement von M in R
> offen sind, d.h. es gibt eine Umgebung eines Punktes x, die
> nicht ganz in M liegt.

nein, das findet man auch bei offenen Mengen:
$(0,1)$ ist offen, und wenn ich (bzgl. [mm] $\IR$) [/mm] eine [mm] $\,1\,$-Umgebung [/mm] um $1/2 [mm] \in [/mm] (0,1)$ lege, so liegt die auch nicht ganz in $(0,1)$.

Du musst zeigen:
Es gibt ein $x [mm] \in [/mm] M$, so dass es kein [mm] $\varepsilon [/mm] > 0$ so gibt, dass [mm] $U_\varepsilon(x)=\{y \green{\in \IR}: |x-y|< \varepsilon\} \subset [/mm] M$. Und wenn Du mal hinguckst: Offenbar gilt
$$M [mm] \subset \IQ\,.$$ [/mm]
Und in jeder [mm] $\varepsilon$-Umgebung [/mm] einer rationalen Zahl findet man eine irrationale...

> Hilft mir hier ein Widerspruchsbeweis weiter?

Sicher auch. Angenommen, $M$ wäre offen. Insbesondere müßte es dann zu [mm] $\frac{1}{2} \in [/mm] M [mm] \subset \IQ$ [/mm] ein [mm] $\varepsilon [/mm] > 0$ so geben, dass... Es kommt auf's selbe raus wie oben angedeutet.

Noch zu der Aussage, dass [mm] $\IR \setminus [/mm] M$ nicht offen ist:

Zeige einfach, dass $M$ auch nicht abgeschlossen ist. (Wäre [mm] $\IR \setminus [/mm] M$ offen, so wäre [mm] $\IR \setminus (\IR \setminus [/mm] M)=M$ abgeschlossen!)

Wir wissen, dass [mm] $(1+1/k)^k \underset{k \to \infty}{\longrightarrow} [/mm] e [mm] \in \IR \setminus M\,.$ [/mm] (Beachte wieder $M [mm] \subset \IQ$). [/mm]

Ferner:
[mm] $$\left(1+\frac{1}{k}\right)^{k}=\left(\frac{k+1}{k}\right)^k=\frac{(k+1)^k}{k^k}\,.$$ [/mm]

Setze mal [mm] $k=2^p$ [/mm] für $p [mm] \in \IN$: [/mm]
[mm] $$\frac{(k+1)^k}{k^k}=\frac{(2^p+1)^{(2^p)}}{2^{(p*2^p)}}$$ [/mm]

Also:
Für $p [mm] \in \IN$ [/mm] definiere [mm] $m:=(2^p+1)^{(2^p)} \in \IZ$ [/mm] und [mm] $n:=p*2^p \in \IN\,.$ [/mm]

Dann gilt

[mm] $$\underbrace{\frac{m}{2^n}}_{\in M}=\frac{(2^p+1)^{(2^p)}}{2^{(p*2^p)}}=\left(\frac{2^p+1}{2^p}\right)^{2p}=(1+1/(2^p))^{2p}\,.$$ [/mm]

Was passiert bei $p [mm] \to \infty$? [/mm]

Gruß,
Marcel

Bezug
                
Bezug
nicht offene Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:46 Do 04.12.2008
Autor: Walodja1987

Super vielen Dank für die ziemlich ausführliche Beschreibung meines Vorgehens. Hat mir sehr geholfen.

Bezug
                        
Bezug
nicht offene Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:52 Do 04.12.2008
Autor: Marcel

Hallo,

> Super vielen Dank für die ziemlich ausführliche
> Beschreibung meines Vorgehens. Hat mir sehr geholfen.

entschuldige, ich hatte das [mm] $\,n\,$ [/mm] falsch notiert. Bitte nicht [mm] $\red{n:=2^{(p*2^p)}}$, [/mm] sondern [mm] $\blue{n:=p*2^p}$ [/mm] setzen (ich habe es bereits editiert).

Das [mm] $\,n\,$ [/mm] war ja im Exponent der Nenner bei der [mm] $\,2\,$ [/mm] (deswegen habe ich ja überhaupt erst den Ansatz [mm] $k=2^p$ [/mm] gewählt, damit wir da [mm] $2^{irgendwas}$ [/mm] schreiben können und dann das $irgendwas=n$ setzen können ).

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]