matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körpernichtabelsche Gruppe mit 57 El
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - nichtabelsche Gruppe mit 57 El
nichtabelsche Gruppe mit 57 El < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nichtabelsche Gruppe mit 57 El: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:33 So 08.02.2009
Autor: algieba

Aufgabe
Gibt es eine nicht-abelsche Gruppe mit 57 Elementen?

Unser Ansatz:
57 = 3*19
Es gibt eine 19-Sylow (folgt aus Sylowsätzen)
Es gibt eine oder 19 3-Sylowgruppen.
Welche muss man jetzt nehmen? wenn es eine gibt ist unsere Gruppe mit 57 Elementen abelsch (Mächtigkeitsargument [mm] $\Rightarrow$ [/mm] zyklisch). Wenn es 19 gibt ist sie nicht zyklisch, also auch nicht abelsch.



        
Bezug
nichtabelsche Gruppe mit 57 El: Antwort
Status: (Antwort) fertig Status 
Datum: 02:30 Mo 09.02.2009
Autor: felixf

Hallo

> Gibt es eine nicht-abelsche Gruppe mit 57 Elementen?
>  Unser Ansatz:
>  57 = 3*19
>
>  Es gibt eine 19-Sylow (folgt aus Sylowsätzen)
>  Es gibt eine oder 19 3-Sylowgruppen.
>  Welche muss man jetzt nehmen? wenn es eine gibt ist unsere
> Gruppe mit 57 Elementen abelsch (Mächtigkeitsargument
> [mm]\Rightarrow[/mm] zyklisch). Wenn es 19 gibt ist sie nicht
> zyklisch, also auch nicht abelsch.

Ja. Allerdings habt ihr noch nicht gezeigt ob das ueberhaupt moeglich ist.

Eventuell koennt ihr versuchen, eine solche Gruppe zu konstruieren. Eine solche Gruppe muss das semidirekte Produkt aus [mm] $\IZ_3$ [/mm] und [mm] $\IZ_{19}$ [/mm] sein und zwar so, dass [mm] $\IZ_{19}$ [/mm] nachher Normalteiler ist. Wisst ihr wie man sowas macht? Bzw hattet ihr das semidirekte Produkt ueberhaupt?

Ansonsten ist es vielleicht hilfreich zu wissen, dass die Gruppe die disjunkte Vereinigung aus Neutralelement, den $2 [mm] \cdot [/mm] 19$ Elementen von Ordnung 3 und den 18 Elementen von Ordnung 19 ist.

Vielleicht hilft auch das hier:

Sei [mm] $\sigma$ [/mm] ein Element der Ordnung 19 und [mm] $\tau$ [/mm] ein Element der Ordnung 3. Dann gilt [mm] $\sigma \tau [/mm] = [mm] \tau \sigma^t$ [/mm] fuer $t [mm] \in \{ 1, \dots, 18 \}$ [/mm] (beachte dass [mm] $\tau [/mm] N = N [mm] \tau$ [/mm] ist wenn $N$ die von [mm] $\sigma$ [/mm] erzeugte Untergruppe ist, da diese ein Normalteiler ist). Zeige damit, dass die Gruppe gleich [mm] $\{ \sigma^i \tau^j \mid 0 \le i < 19, 0 \le j < 3 \}$ [/mm] ist, und beschreibe die Multiplikation von zwei solchen Elementen mit der Beziehung von oben. (Falls ihr schonmal mit [mm] $D_n$ [/mm] was aehnliches gemacht habt: das geht hier wohl auch so.)

Damit kommt ihr vielleicht weiter...

LG Felix


Bezug
        
Bezug
nichtabelsche Gruppe mit 57 El: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Di 10.02.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]